west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "增殖" 229 results
  • Inhibitory effect of small interfering RNA targeting peroxisome-proliferator-activated receptor-γcoactivator-1αon retinal neovascularization in the mouse

    ObjectiveTo evaluate the inhibitory effect of small interfering RNA (siRNA) targeting peroxisome-proliferator-activated receptor-γcoactivator-1α(PGC-1α) on retinal neovascularization in the mouse. MethodsEighty seven-day-old C57BL/6J mice were divided into normal group, model blank group, model control group and PGC-1αsiRNA group, twenty mice in each group. Mice in the normal group were kept in normal room air. Mice in the model blank group, model control group and PGC-1αsiRNA group were induced for retinal neovascularization by hypoxia. Liposome with PGC-1αsiRNA (1 μl) and liposome with negative control siRNA (1 μl) were injected into the vitreous in the PGC-1αsiRNA group and model control group respectively when mice were moved out to room air from the cabin (Postnatal 12). No injection were performed in the model blank group. At postnatal 17, fluorescein angiography was used to assess the vascular pattern.The proliferative neovascular response was quantified by counting the nuclei of new vessels extending from the retina into the vitreous in cross-sections. PGC-1αand vascular endothelial growth factor (VEGF) level in retina were measured by real-time polymerase chain reaction (real-time PCR) and Western blot. Inhibition efficiency of PGC-1αsiRNA on PGC-1αand VEGF was calculated. ResultsMice in the normal group showed reticular distribution of retinal blood vessels. Central nonperfused retina, neovascular tufts and fluorescein leakage were seen in the model blank group and model control group. Neovascular tuft and fluorescein leakage were decreased in the PGC-1αsiRNA group compared to the model blank group and model control group. The neovascular nuclei were increased in the model blank group and model control group compared to the normal group (P < 0.05). The neovascular nuclei were decreased in the PGC-1αsiRNA group compared to the model blank group and model control group (P < 0.05). The expression of PGC-1αmRNA and protein in retina was increased significantly in the model blank group and model control group as compared with normal group, while decreased 54% and 53% respectively in the PGC-1αsiRNA group as compared with model blank group and model control group (P < 0.05). The expression of VEGF mRNA and protein in retina was increased significantly in the model blank group and model control group as compared with normal group, while decreased significantly in the PGC-1αsiRNA group (decreased 48% and 40% respectively) as compared with model blank group and model control group (P < 0.05). ConclusionsIntravitreal injection of PGC-1αsiRNA mediated by liposome can inhibit retinal neovascularization in the mouse effectively.

    Release date: Export PDF Favorites Scan
  • PROLIFERATION PROPERTIES AND TELOMERASE ACTIVITY OF HUMAN EMBRYONIC TENDON CELLS TRANSFORMED BY ptsA58H PLASMID

    OBJECTIVE: To analysis the proliferation properties and telomerase activity of human embryonic tendon cells transformed by ptsA58H plasmid cultured in vitro continuously. METHODS: The 40th, 70th, and 75th passages of transformed human embryonic tendon cells (THETC) were adopted. The collagen secretion of THETC was detected by immunohistochemical methods, the growth curve of different passages of THETC was compared, and chromosome karyotype was analyzed. Total RNA of THETC were extracted to detect human telomerase reverse transcriptase (hTERT) mRNA expression by RT-PCR technique. RESULTS: When THETC were subcultured to 70 passages, the morphological characteristics of cells changed and began replicative senescence. THETC still could secret type I collagen normally. The chromosome of THETC was heteroploid (2n = 94). There were no hTERT mRNA expression. CONCLUSION: SV40 transfection can not make human embryonic tendon cells immortalization, on the other hand, human embryonic tendon cells transformed by ptsA58H plasmid has no tendency of malignant transformation.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • EFFECT OF PLATELETRICH PLASMA ON PROLIFERATION AND OSTEOGENIC DIFFERENTIATION OF BONE MARROW STEM CELLS IN CHINA GOATS

    Objective To explore the effect of the platelet-rich plasma (PRP) on proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells (MSCs) in China goat in vitro. Methods MSCs from the bone marrow of China goat were cultured. The third passage of MSCs were treated with PRP in the PRP group (the experimental group), but the cells were cultured with only the fetal calf serum (FCS) in the FCS group (the control group). The morphology and proliferation of the cells were observed by an inverted phase contrast microscope. The effect of PRP on proliferation of MSCs was examined by the MTT assay at 2,4,6 and 8 days. Furthermore, MSCs were cultured withdexamethasone(DEX)or PRP; alkaline phosphatase (ALP) and the calcium stainingwere used to evaluate the effect of DEX or PRP on osteogenic differatiation of MSCs at 18 days. The results from the PRP group were compared with those from the FCS group. Results The time for the MSCs confluence in the PRP group was earlier than that in the FCS group when observed under the inverted phase contrast microscope. The MTT assay showed that at 2, 4, 6 and 8 days the mean absorbance values were 0.252±0.026, 0.747±0.042, 1.173±0.067, and 1.242±0.056 in the PRP group, but 0.137±0.019, 0.436±0.052, 0.939±0.036, and 1.105±0.070 in the FCS group. The mean absorbance value was significantly higher in the PRP group than in the FCS group at each observation time (P<0.01). Compared with the FCS group, the positive-ALP cells and the calcium deposition were decreased in the PRP group; however, DEX could increase boththe number of the positiveALP cells and the calcium deposition. Conclusion The PRP can promote proliferation of the MSCs of China goats in vitro but inhibit osteogenic differentiation.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • Regulation effect of vascular endothelial growth factor on angiogenesis in developmental human fetal retinas

    Objective To investigate the spatial and temporal regulation effect of VEGF on human fetal retinal vascularization and angiogenesis. Methods The posterior segmental retinas from 54 human fetuses of the 9th week to the 40th week were studied by immunohistodhemistry standing for the expressions of VEGF and PCNA. Results 1. The distribution of VEGF espression was spiking and the peaks were during the 9th-13th and around the 26th week. 2. PCNA immunoreactivity was localized in spindle cells and vascular endothelial cells. The expression level was fluctuated during the developmental process. The peaks were during the 9th-13th and around the 21st week. In these periods, the spindle cells kept proliferating and differentiating, and remodelled subsequently to form the inner side retinal vessels. From the 26th or 34th week, the PCNA immununoreactivity is fully expressed in the vascular endothelial cells of the inner and outer margin of inner nuclear layer(INL) and kept to full terms. 3. Significant positive correlation were shown between the content of VEGF in the retina and that of PCNA in spindle cells and vascular endothelial cells(r=0.736,p<0.01). Conclusion VEGF was positively involved in modulating human fetal retinal vascularization and angiogenesis. (Chin J Ocul Fundus Dis,1999,15:12-15)

    Release date:2016-09-02 06:08 Export PDF Favorites Scan
  • Clinical observation on isolated congenital hypertrophy of retinal pigment epithelium

    Objective To observe the clinical features of congenital hypertrophy of retinal pigment epithelium (CHRPE). Methods The clinical data of 13 CHRPE patients including visual acuity, slit-lamp microscope examination, indirect ophthalmoscope examination and fundus fluorescein angiography (FFA) were retrospectively analyzed. The patients, 9 males and 4 females, with the mean age of 27.8 years. Results All patients were unilateral, without systemic diseases and no subjective symptoms in majority. Only 30.77% of initial diagnosis was correct, other diagnosis include choroidal nevi, old chorioretinopathy or no diagnosis. The round or oval black lesion was found in ocular fundus of all patients, 7.69% was located on the optic disk, 46.15% was located on the inferior temporal retina, 30.77% was located on the superior temporal retina, 15.39% was located on the inferior nasal retina. 92.31% was pigmented CHRPE and 7.69% was non-pigmented CHRPE. FFA showed blocked fluorescence and transmitted fluorescence in the lesion, few eyes were found dilated capillary vessel and fluorescent leakage on the late stage of FFA, most eyes had normal retinal vessels. Conclusion The isolated CHRPE is round or oval black lesion in ocular fundus which lack of subjective symptoms, mostly located on the peripheral retina; the FFA characteristics showed blocked fluorescence and transmitted fluorescence, and CHRPE often misdiagnosed as other disease, it should be combine the ocular fundus manifestation with the FFA to diagnose properly.

    Release date:2016-09-02 05:46 Export PDF Favorites Scan
  • THE INFLUENCE OF HYALURONIC ACID AND BASIC FIBROBLAST GROWTH FACTOR ON THE PROLIFERATION OF LIGAMENTOUS CELLS

    OBJECTIVE: To observe the effects of hyaluronic acid (HA) and basic fibroblast growth factor (bFGF) on the proliferation of the cells from medial collateral ligament (MCL) and anterior cruciate ligament (ACL) cells. METHODS: The MCL cells and ACL cells of mature New Zealand white rabbit were cultured, while HA, bFGF or HA and bFGF were added to the cell culture media, the cellular proliferation was assayed by MTT method. RESULTS: HA only had no effect on the preoliferation of ACL cells, but had a small stimulatory effect on the proliferation of MCL cells. The addition of 1 ng/ml bFGF enhanced the proliferation of both MCL and ACL cells significantly, and this enhancement was maximal in the concentration of 50 ng/ml. However, the enhancement of proliferation of MCL and ACL cells could be achieved when the combination of HA in concentration of 100 micrograms/ml and bFGF in concentration of 100 ng/ml. CONCLUSION: It is evident that bFGF can enhance the proliferation of the ligament cells. HA can maintain the normal growth of ACL cells with no effect on the proliferation of the cells, while HA has a small stimulatory effect on the proliferation of MCL cells. However, when bFGF is coordinated with HA, more improvement of cellular proliferation can be achieved. HA can be used as a potential carrier for bFGF to enhance the healing of ligamentous tissue injuries.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • STUDY ON THE EFFECT OF LEPTIN ON FIBROBLAST PROLIFERATION AND COLLAGEN SYNTHESISIN VITRO IN RATS

    Objective To investigate the effect of leptin on fibroblast proliferation and collagen synthesis as to elucidate that fibroblasts play a role in leptin’s effect on wound healing. Methods Purified dermal fibroblasts were derived from sucking wistar rat skin and exposedto leptin at concentration of 0, 10, 50, 100, 200, and 400 ng/ml. The survived fibroblasts were assessed by the colorimetric thiazolyl blue (MTT) assay. Replication of fibroblast was quantified by the incorporation of 3H-thymidine. Collagen synthesis of fibroblast cell was measured by the incorporation of 3H-proline into collagenasesensitive protein. Results The absorption of fibroblast exposed to leptin at concentration of 200 and 400 ng/ml 0.082±0.013, 0.091±0.018 was higher than that of control group 0.063±0.010, P<0.05. The incorporations of 3H-thymidine of fibroblast exposed to leptin at concentration of 200 and 400 ng/ml 379±101 cpm,326±33 cpm were significantly higher than those of control group 219±56 cpm, P<0.05. The incorporations of 3H-proline of fibroblast exposed to leptin at concentration of 200 and 400 ng/ml 911±55 cpm, 1 072±259 cpm were significantly higher than that of control group 679±176 cpm, P<0.05. Conclusion Leptin can promote rat cutaneous fibroblast proliferation and collagen synthesis in vitro. This suggests that cutaneous fibroblast plays a role in leptin’s promoting skin wound healing and it may be one of the main mechanisms by which leptin enhances skin wound healing.

    Release date:2016-09-01 09:27 Export PDF Favorites Scan
  • RESEARCH ON MARROW MESENCHYMAL STEM CELL PROLIFERATION BY COCULTURING WITH SCHWANN CELL

    Objective To evaluate the effect of Schwann cell (SC) on the proliferation of marrow mesenchymal stem cells (MSCs) and provide evidence for application of SC in construction of the tissue engineered vessels.Methods SC and MSCs were harvested from SD rats(weight 40 g). SC were verified immunohstochemically by the S-100 staining, and MSCs were verified by CD 44, CD 105, CD 34 and CD 45. The 3rd passages of both the cells were cocultured in the Transwell system and were amounted by the 3H-TDR integration technique at 1, 3, 5 and 7 days,respectively. The results were expressed by the CPM(counts per minute, CPM) values. However, MSCs on both the layers were served as the controls. The Westernblot was performed to assess the expression of the vascular endothelial growth factor (VEGF), its receptor Flk-1, and the associated receptor neuropilin 1(NRP-1) in SC, the trial cells, and the controls. Results SC had a spindle shape in the flasks, and more than 90% of SC had a positive reaction for the S-100 staining.MSCs expressed CD44 and CD105, and had a negativesignal in CD 34 and CD 45. The CPM values of MSCs in the trial groups were 2 411.00±270.84,3 016.17±241.57,6 570.83±2 848.27 and 6 375.8±1 431.28at 1, 3, 5 and 7 days, respectively. They were significantly higher in their values than the control group (2 142.17±531.63,2 603.33±389.64,2 707.50±328.55,2 389.00±908.01), especially at 5 days (P<0.05). The Western blot indicated that VEGF was expressedobviously in both the SC group and the cocultured MSCs grou,p and was less visible in the control cells. The expressions of Flk-1 and NRP-1 inthe cocultured MSCs were much ber than in the controls. Conclusion SC can significantly promote the proliferation of MSCs when they are cocultured. The peak time of the proliferation effect appeared at 5 days. This effect may be triggered by the up-regulation of VEGF in MSCs, which also leads to the upregulation of Flk-1 and NRP-1 .

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • EFFECT OF EXOGENOUS BASIC FIBROBLAST GROWTH FACTOR ON PROLIFERATION AND MIGRATION OFENDOTHELIAL CELLS OF PARTIAL THICKNESS SCALD IN RATS

    Objective To observe the proliferation and migration of endothelial cells after 30% total burn surface area (TBSA) of deep partial thickness scald, and the effect of basic fibroblast growth factor (bFGF) on angiogenesis during wound healing.Methods A total of 133 male Wistar ratswere divided randomly into normal control (n=7), injured control group (n=42), bFGF group (n=42) andanti-c-fos group (n=42). The apoptosis expression of fibroblasts was determinedwith in situ hybridization and the changes of proliferation cell nuclear antigen(PCNA), focal adhesion rinase(FAK), c-fos and extracellular signalregulated kinase(ERK) proteins expression were detected with immunohistochemistry staining technique after 3 hours, 6 hours, 1 day, 3 days, 7 days, 14 days and 21 days of scald.Results In injured control group and bFGF group, theproliferation rate of the vascular endothelial had evident changes 7 days and14 days after scald; the expression of FAK was increased 14 days after scald. ERK proteins expression was different between injury control group and bFGF group at initial stage after scald. Stimulation of ERKs by bFGF led to up-regulation of c-fos and b expression of FAK. Conclusion Exogenous bFGF extended the influence on wound healing process by ERK signaling pathway, affecting migration cascade of vascular endothelial cell. The oncogene proteins play an important role on accelerating angiogenesis duringwound healing.

    Release date: Export PDF Favorites Scan
  • Roles of PGC-1α and Nrf2 Synergistic Regulating γ-Glutamylcysteine Synthetase in Rats with Chronic Obstructive Pulmonary Disease

    Objective To explore the regulation of peroxisome proliferator-activated receptor γ coactivator 1α( PGC-1α) and NF-E2-related factor 2( Nrf2) on expression of γ-glutamylcysteine synthetase ( γ-GCS) , and their roles in chronic obstructive pulmonary disease( COPD) . Methods Twenty-four SD rats were randomly divided into a COPD group and a normal control group. COPD model was established by intratracheal instillation of lipopolysaccharide ( LPS) and daily exposure to cigarette smog in the COPD group. The lung function was measured and the pathological changes were observed. The protein and mRNA expressions of PGC-1α, Nrf2, and γ-GCS in lung tissue were measured by immunohistochemistry, Western blot, in site hybridization ( ISH) , and reverse transcription-polymerase chain reaction ( RT-PCR ) ,respectively. Results In the COPD group, the pulmonary function ( FEV0. 3, FEV0. 3 /FVC, PEF) damage and lung pathological changes were conformed as morphological characteristics of COPD. The mRNA of PGC-1α and Nrf2 expressed in lung tissues of two group rats in the region consistent with γ-GCS mRNA. The protein and mRNA expressions of PGC-1αand γ-GCS were markedly increased in the COPD group( all P lt;0. 05) ,and the protein expression of Nrf2 was obviously up-regulated ( P lt; 0. 01) , while Nrf2 mRNA had no significant difference between the two groups( P gt;0. 05 ) . Linear correlation analysis showed that the level ofPGC-1αprotein was positively correlated with the levels of Nrf2 protein and mRNA ( r = 0. 775, 0. 515, all P lt; 0. 01) , and the levels of PGC-1αand Nrf2 protein were positively correlated with the levels of γ-GCS protein ( r = 0. 531, 0. 575, all P lt; 0. 01) and mRNA ( r = 0. 616, 0. 634, all P lt; 0. 01) . Conclusions PGC-1α, which may serve as a co-activator of Nrf2, can up-regulate the expression of γ-GCS gene cooperatively with Nrf2 through a common pathway, which might involve in the oxidative and antioxidative mechanism in the pathogenesis of COPD.

    Release date:2016-09-14 11:25 Export PDF Favorites Scan
23 pages Previous 1 2 3 ... 23 Next

Format

Content