目的 了解新生儿患者多重耐药菌社区感染的特点和定植情况,采取预防控制措施,防止在院内传播。 方法 对2011年9月-2012年8月所有新入院新生儿患者共801例进行耐甲氧西林金黄色葡萄球菌(MRSA)、耐万古霉素肠球菌(VRE)和产超广谱β内酰胺酶(ESBL)菌入院筛查,了解多重耐药菌社区感染的特点和定植情况。并将801例新生儿患者(观察组)医院感染发生率与2010年9月-2011年8月同期801 例新生儿患者(对照组)医院感染发生率进行比较。 结果 观察组发现MRSA和产ESBL菌共321例,检出率为40.1%。其中包括单纯MRSA 45例,占14.1%;产ESBL菌238例,占74.1%;MRSA+产ESBL菌38例,占11.8%。观察组医院感染发生率为2.0%,多重耐药菌医院感染构成比为12.5%;对照组医院感染发生率为5.1%,多重耐药菌医院感染构成比为53.6%;两组医院感染发生率和多重耐药菌医院感染构成比差异均有统计学意义(P<0.01)。 结论 新生儿患者多重耐药菌定植情况严重,应引起高度重视,加强管理可防止在医院传播,减少医院感染发生。
Objective To investigate the risk factors of multidrug-resistant organism (MDRO) infection in patients with car accident injuries in intensive care unit (ICU), providing clinical guidance for reducing MDRO infection in car accident patients. Methods The clinical data of patients with car accident injuries in Sichuan Provincial People’s Hospital between January 1st 2019 and February 28th 2023 were collected, and the relevant data were analyzed retrospectively to explore the risk factors of MDRO infection. Results A total of 141 patients with car accident injuries were collected, of whom 30 had MDRO infection. The proportions of males (P=0.012), indwelling catheters (P=0.005), mechanical ventilation (P=0.001), length of hospital stay (P<0.001), and total treatment costs (P<0.001) in the infection group were higher than those in the non-infection group. Multiple logistic regression analysis showed that male [odds ratio (OR)=3.797, 95% confidence interval (CI) (1.174, 12.275), P=0.026], mechanical ventilation [OR=4.596, 95%CI (1.538, 13.734), P=0.006], and length of hospital stay≥20 d [OR=1.014, 95%CI (1.001, 1.028), P=0.037] were independent risk factors for MDRO infection in car accident patients. Conclusions Male, mechanical ventilation, and increased length of hospital stay are independent risk factors for MDRO infection in car accident patients. For such patients, the prevention and control measures of hospital infection should be strictly implemented to reduce the risk of infection.
Objective To investigate the changes of multidrug-resistant organisms (MDROs) in the First People’s Hospital of Longquanyi District of Chengdu around its overall relocation. Methods The First People’s Hospital of Longquanyi District of Chengdu was overall relocated on December 31st, 2016. The detection rates of MDROs and the changes in nosocomial infections before the relocation (from 2015 to 2016) and after the relocation (from 2017 to 2020) were retrospectively analyzed. Results A total of 83634 qualified specimens were submitted for inspection, 8945 strains of pathogenic bacteria were detected, and the detection rate of pathogenic bacteria was 10.70%, showing an increasing trend in yearly detection rates of pathogenic bacteria (χ2trend=8.722, P=0.003); among them, 1551 MDRO strains were detected, and the detection rate of MDROs was 17.34%, showing an increasing trend in yearly detection rates of MDROs (χ2trend=11.140, P=0.001). The detection rate of pathogenic bacteria before relocation was lower than that after relocation, and the difference was statistically significant (9.64% vs. 11.08%; χ2=35.408, P<0.001); there was no significant difference in the detection rate of MDROs before and after relocation (16.32% vs. 17.66%; χ2=2.050, P=0.152). From 2015 to 2020, the detection rates of pathogenic bacteria from sputum+throat swab specimens (χ2trend=81.764, P<0.001) and secretion+pus specimens (χ2trend=56.311, P<0.001) showed increasing trends, while the detection rates of pathogenic bacteria from blood specimens (χ2trend=110.400, P<0.001), urine specimens (χ2trend=11.919, P=0.001), and sterile body fluid specimens (χ2trend=20.158, P<0.001) showed decreasing trends. The MDRO detection rates of Escherichia coli (χ2trend=21.742, P<0.001), Staphylococcus aureus (χ2trend=47.049, P<0.001), and Pseudomonas aeruginosa (χ2trend=66.625, P<0.001) showed increasing trends, while the MDRO detection rates of Klebsiella pneumoniae (χ2trend=2.929, P=0.087) and Acinetobacter baumannii (χ2trend=0.498, P=0.481) showed no statistically linear trend, but the MDRO detection rate of Acinetobacter baumannii dropped significantly in 2017. In the targeted monitored MDROs, the proportions of nosocomial infections in methicillin-resistant Staphylococcus aureus (χ2trend=4.581, P=0.032), carbapenem-resistant Enterobacteriaceae (χ2trend=8.031, P=0.005), and carbapenem-resistant Pseudomonas aeruginosa (χ2trend=6.692, P=0.010) showed decreasing trends; there was no statistically linear trend in the proportion of nosocomial infections in carbapenem-resistant Acinetobacter baumannii (χ2trend=0.597, P=0.440); only one strain of vancomycin-resistant Enterococcus was detected in 2017, and no nosocomial infection occurred. Conclusions The overall detection rate of pathogenic bacteria and MDROs in this tertiary general hospital around relocation showed increasing trends year by year. The detection rate of pathogenic bacteria after relocation was higher than that before relocation, but the detection rate of MDROs after relocation did not differ from that before relocation. The proportion of nosocomial infections among the targeted monitored MDROs decreased.
ObjectiveTo evaluate the efficiency of hydrogen peroxide vapor (HPV) in disinfecting multidrug-resistant organisms (MDROs).MethodsWe searched Cochrane Library, PubMed, Embase, Web of Science, China National Knowledge Infrastructure, Wanfang, China Science and Technology Journal Database for before-after studies or case-control studies or cohort studies evaluating efficiency of HPV and published from January 2010 to December 2020 (the time range was from January 2000 to December 2020 in the snowball searching). RevMan 5.4 and R 4.0.2 softwares were used for meta-analysis.ResultsA total of 9 studies were included, consisting of 8 before-after studies and 1 cohort study. Six studies evaluated positive rate of environmental samplings, meta-analysis revealed that HPV combined with manual cleaning disinfected the environment efficiently [relative risk (RR)=0.03, 95% confidence interval (CI) (0.01, 0.08), P< 0.000 01] and HPV was more efficient than manual cleaning [RR=0.04, 95%CI (0.02, 0.10), P< 0.000 01]. Three studies evaluated the hospital-acquired MDROs colonization/infection rates, and the results of the 3 studies were consistent, revealing that HPV could reduce hospital-acquired MDROs colonization/infection rates.ConclusionHPV is efficient in reducing MDROs contaminated surfaces and hospital-acquired infection rate.
Objective To investigate the antibiotic resistance distribution and profiles of multidrug resistant bacteria in respiratory intensive care unit ( RICU) , and to analyze the related risk factors for multidrug resistant bacterial infections. Methods Pathogens from79 patients in RICU from April 2008 to May 2009 were analyzed retrospectively. Meanwhile the risk factors were analyzed by multi-factor logistic analysis among three groups of patients with non-multidrug, multidrug and pandrug-resistant bacterialinfection. Results The top three in 129 isolated pathogenic bacteria were Pseudomonas aeruginosa ( 24. 0% ) , Staphylococcus aureus( 22. 5% ) , and Acinetobacter baumannii( 15. 5% ) . The top three in 76 isolated multidrug-resistant bacteria were Staphylococcus aureus ( 38. 9% ) , Pseudomonas aeruginosa ( 25. 0% ) , and Acinetobacter baumannii( 19. 4% ) . And the two main strains in 29 isolated pandrug-resistant bacteria were Pseudomonas aeruginosa ( 48. 3% ) and Acinetobacter baumannii ( 44. 8% ) . Multi-factor logistic analysis revealed that the frequency of admition to RICU, the use of carbapenem antibiotics, the time of mechanical ventilation, the time of urethral catheterization, and complicated diabetes mellitus were independent risk factors for multidrug-resistant bacterial infection( all P lt; 0. 05) . Conclusions There is a high frequency of multidrug-resistant bacterial infection in RICU. Frequency of admition in RICU, use of carbapenem antibiotics, time of mechanical ventilation, time of urethral catheterization, and complicated diabetes mellitus were closely related withmultidrug-resistant bacterial infection.
Objective To evaluate the effect of active screening and intervention of multidrug-resistant organisms (MDROs) on control nosocomial infection in the general intensive care unit (ICU). Methods A non-concurrent control trial was conducted in patients hospitalized in the ICU for more than 24 hours in the Second Affiliated Hospital of Fujian Medical University. Patients underwent active screening of MDROs for nasal vestibular swab, throat swab and rectal swab combined with further intensive intervention for patients with positive screening result during Sept. 2014 to Aug. 2015 were included as an intervention group, patients only underwent active screening during Sept. 2013 to Aug. 2014 were included as a screening group, and patients without undergoing active screening during Sept. 2012 to Aug. 2013 were as a control group. SPSS 19.0 software was used to compare the hospital infection rate and the infection rate of MDROs among the three groups. Results A total of 1 773 patients were included, of which 655 patients were in the intervention group, 515 patients were in the screening group, and 603 patients were in the control group. The difference of hospital infection rates among the three groups was statistically significant (χ2=21.087, P < 0.001), and further pairwise comparison results showed that the intervention group was lower than the screening group (χ2=5.891, P=0.015), and the screening group was lower than the control group (χ2=4.259, P=0.039). The adjustment daily infection rate of the intervention group, screening group and control group were 6.69‰, 10.88‰, and 15.39‰, respectively. The difference of MDROs hospital infection rates among the three groups was statistically significant (χ2=21.039, P < 0.001), and further pairwise comparison results showed that the intervention group was lower than the screening group (χ2=5.936, P=0.015), and the screening group was lower than the control group (χ2=5.798, P=0.016). The MDROs thousand daily infection rate of the intervention group was lower than that of the screening group (3.90‰ vs. 7.30‰, χ2=5.999, P=0.014). Conclusion The active screening plus intensive intervention of MDROs can effectively reduce the incidence rates of nosocomial infections and MDROs infections in ICU.
Medical institutions of China still face two challenges in hospital infections currently: one challenge is from infection, including infectious diseases, multidrug-resistant bacteria healthcare-associated infection (HAI), and classic HAI; the another challenge comes from the management of HAI in medical institutions, such as lack of full-time staff and insufficient capacity, inadequate infection control organizations, insufficient awareness of infection control among medical staff, and unbalanced development. To cope with these severe challenges, we must do the following three aspects: establishing the discipline of HAI, and improving people’s infection control ability through human-orienting; improving the management organization and system of HAI; improving the awareness of infection control among all medical staff, carrying out scientific and orderly infection prevention and control work in accordance with the law, and adhering to evidence-based infection control.
Objective To investigate the value of bronchial mucosa biopsy and quantitative culture in the differential diagnosis of lower airway bacterial colonization and infection. Methods A prospective observational cohort survey onMDR Pseudomonas aeruginosa and Acinetobacter baumannii was carried out in intubed or tracheotomized patients with invasive ventilation in respiratory intensive care unite ( RICU) . A total of 50 ICU patients were followed for the detection of MDR pathogen colonization or infection from June 2008 to October 2009. All subjects were divided into an infection group and a colonization group according to the outcome of patients discharged fromthe RICU. Baseline information, APACHEⅡ scores, and CPIS scores were recorded on individual forms for each patient untill discharge or death. Bronchial mucosa biopsy was conducted on appropriate time to identify whether the patient was comfirmed as infection. Microbiological diagnosis was performed with quantitative culture. Results Fifty patients were enrolled in this study, of which infected in 23 cases and colonized in 27 cases. The time of invasive mechanical ventilation, length ofICU stay, catheter indwelling time, and the kinds of disease were significantly different between the two groups( P lt; 0. 05) . The kinds of using antibiotics before onset of multi-drug resistance of bacteria showed that cefoxitin/ cefmetazole and mezlocillin also had significant difference between the infection group and the colonization group. The results of dynamic CPIS score of the infection group showed that scores at each timepoint were higher than those in the colonization group. However, the results of t-test showed that there was higher score in the infection group than that in the colonization group on 14 days after intubation ( P lt;0. 05) . The bronchial mucosa biopsy showed that airway inflammation was detected in 19 cases in the infection group and 9 cases in colonization group. The positive rate in the infection and the colonization group were 55. 6% and 25. 0% , respectively assessed by traditional threshold of 103 cfu/mL for PSB in quantitative bacterial culture. In addition, there was more inflammatory cells in the patients with drug-resistant pathogens infection than that in the patients without nosocomial infection. The combination of bronchial mucosa biopsy and microorganism quantitative cultures had the highest sensitivity and specificity and the highest diagnostic accuracy. Conclusions Bronchial mucosa biopsy combining microorganism quantitative culture is feasible in identifying colonized or infected bacteria. Invasive mechanical ventilation time, length of ICU stay and the catheter indwelling time extending are risk factors for bacterial colonization.
Diabetic foot infection (DFI) is one of the main causes of hospitalized patients with diabetic foot. DFI should be diagnosed according to the clinical manifestations, and the severity of infection should be graded in time. Diabetic foot wounds are mostly chronic wounds, and there are many kinds of bacterial infections. The bacteria and antibiotics resistance will change with the progress of the disease. Bacterial biofilm is also one of the important causes of antibiotic resistance. Reasonable and timely surgical treatment combined with effective antibiotic treatment is an effective measure to deal with the challenge of DFI. On this basis, multidisciplinary cooperation will achieve the best clinical outcome.