Objective To investigate the risk factors of multidrug-resistant organism (MDRO) infection in patients with car accident injuries in intensive care unit (ICU), providing clinical guidance for reducing MDRO infection in car accident patients. Methods The clinical data of patients with car accident injuries in Sichuan Provincial People’s Hospital between January 1st 2019 and February 28th 2023 were collected, and the relevant data were analyzed retrospectively to explore the risk factors of MDRO infection. Results A total of 141 patients with car accident injuries were collected, of whom 30 had MDRO infection. The proportions of males (P=0.012), indwelling catheters (P=0.005), mechanical ventilation (P=0.001), length of hospital stay (P<0.001), and total treatment costs (P<0.001) in the infection group were higher than those in the non-infection group. Multiple logistic regression analysis showed that male [odds ratio (OR)=3.797, 95% confidence interval (CI) (1.174, 12.275), P=0.026], mechanical ventilation [OR=4.596, 95%CI (1.538, 13.734), P=0.006], and length of hospital stay≥20 d [OR=1.014, 95%CI (1.001, 1.028), P=0.037] were independent risk factors for MDRO infection in car accident patients. Conclusions Male, mechanical ventilation, and increased length of hospital stay are independent risk factors for MDRO infection in car accident patients. For such patients, the prevention and control measures of hospital infection should be strictly implemented to reduce the risk of infection.
ObjectiveTo explore the practical effects of multi-disciplinary team (MDT) management model in the management of multidrug-resistant organisms (MDROs).MethodsIn 2015, the multi-drug resistant MDT was established, and MDT meetings were held regularly to focus on the problems in the management of MDROs and related measures to prevent and control nosocomial infections of MDROs.ResultsThe detection rate of MDROs from 2014 to 2017 was 9.20% (304/3 303), 7.11% (334/4 699), 8.01% (406/5 072), and 7.81% (354/4 533), respectively. The difference was statistically significant (χ2=11.803, P=0.008), in which the detection rates of carbapenem-resistant Acinetobacter baumannii (CRABA), carbapenem-resistant Pseudomonas aeruginosa, and carbapenem-resistant Enterobacteriaceae (CRE) changed significantly (χ2=39.022, 17.052, 12.211; P<0.05). From 2014 to 2017, the proportion of multi-drug resistant infections decreased year by year, from 84.54% to 52.82%, and the proportion of multi-drug resistant hospital infections also declined, from 46.05% to 23.16%; the nosocomial infection case-time rate decreased from 0.24% to 0.13% year-on-year; the proportion of multi-drug resistant hospital infections in total hospital infections was 9.07%, 11.17%, 10.47%, and 6.16%, respectively; in the distribution of multi-drug resistant nosocomial infection bacteria, the proportion of methicillin-resistant Staphylococcus aureus, CRABA, CRE hospital infections accounted for the number of MDROs detected decreased year by year. The use rate of antibiotics decreased from 46.58% in 2014 to 42.93% in 2017, and the rate of pathogens increased from 64.83% in 2014 to 84.59% in 2017.ConclusionThe MDT management mode is effective for the management and control of MDROs, which can reduce the detection rate, infection rate, hospital infection rate, and antibacterial drug use rate, increase the pathogen detection rate, and make the prevention and control of MDROs more scientific and standardized.
目的 对烧伤层流病房多重耐药菌感染的相关因素进行分析,通过护理干预来预防和减少烧伤病房多重耐药菌感染的发生。 方法 回顾性分析2011年1月-12月收治的629例烧伤患者,其中发生多重耐药菌感染74例,感染率为11.8%。 结果 感染部位:创面分泌物培养感染占70.2%,痰液标本培养感染占9.4%,血液标本培养感染占16.2%,其他占4.2%。感染病原菌:以金黄色葡萄球菌为主,占77.0%;鲍曼不动杆菌占4.2%,铜绿假单胞菌占10.8%,肺炎克雷伯菌占6.7%,真菌感染占1.3%。 结论 对发生医院内多重耐药菌感染的原因进行分析并及时采取相应的护理干预措施,及可行的医院感染管理控制措施,对烧伤患者预后有重要的意义,可有效降低院内感染率的发生。
ObjectiveTo evaluate the efficiency of hydrogen peroxide vapor (HPV) in disinfecting multidrug-resistant organisms (MDROs).MethodsWe searched Cochrane Library, PubMed, Embase, Web of Science, China National Knowledge Infrastructure, Wanfang, China Science and Technology Journal Database for before-after studies or case-control studies or cohort studies evaluating efficiency of HPV and published from January 2010 to December 2020 (the time range was from January 2000 to December 2020 in the snowball searching). RevMan 5.4 and R 4.0.2 softwares were used for meta-analysis.ResultsA total of 9 studies were included, consisting of 8 before-after studies and 1 cohort study. Six studies evaluated positive rate of environmental samplings, meta-analysis revealed that HPV combined with manual cleaning disinfected the environment efficiently [relative risk (RR)=0.03, 95% confidence interval (CI) (0.01, 0.08), P< 0.000 01] and HPV was more efficient than manual cleaning [RR=0.04, 95%CI (0.02, 0.10), P< 0.000 01]. Three studies evaluated the hospital-acquired MDROs colonization/infection rates, and the results of the 3 studies were consistent, revealing that HPV could reduce hospital-acquired MDROs colonization/infection rates.ConclusionHPV is efficient in reducing MDROs contaminated surfaces and hospital-acquired infection rate.
Objective To know the status quo of multidrug-resistant organism (MDRO) infection in primary general hospitals, analyze the differences among various intervention measures, and put forward guiding principles for MDRO infection control in primary general hospitals. Methods We investigated all patients (n=51 612) admitted into the hospital between January 2013 and December 2015, and found out 6 types of MDRO. Pre-interventional investigation was carried out between January 2013 and June 2014 (before intervention) during which no intervention measures were taken; Intervention was carried out between July 2014 and December 2015 (after intervention). All departments in the hospital (6 groups) were matched with intervention measures (6 groups) randomly. Then, we compared the MDRO detection rate, nosocomial infection case rate and intervention compliance rate among the groups. Results We detected altogether 611 MDRO cases (without duplication) out of the 51 612 cases. The total detection rate of MDRO was 1.18%. The detection rate of MDRO before and after intervention was 1.37% and 1.01%, respectively. The difference between the two was of statistical significance (P<0.05). After the intervention, the detection rate in groups 1, 5 and 6 was significantly lower than before (P<0.05); the differences in detection rate among groups 2, 3, and 4 were not significant (P> 0.05). Nosocomial infection rate decreased from 0.28% before intervention to 0.14% after intervention (P<0.05). After the intervention, MDRO nosocomial infection case rate of groups 1, 5 and 6 was significantly lower than before (P<0.05); the rate was lower in groups 3 and 4 than before without any significance (P>0.05); no MDRO cases were detected in group 2 and comparison was meaningless. The knowledge rates of medical workers and of nursing staff increased from 52.97% and 20.00% before intervention to 78.76% and 66.34% after intervention, respectively (χ2=30.670, 38.604;P<0.05). The compliance to all kinds of protection measures improved significantly (P<0.05) except compliances to equipment of hand antiseptic agent and patient transfer order (P> 0.05). Conclusion Promoting the compliance rate to hand hygiene and environmental cleaning and disinfection, primary general hospitals can decrease the detection rate and nosocomial infection case rate of MDRO.
Objective To investigate the changes of multidrug-resistant organisms (MDROs) in the First People’s Hospital of Longquanyi District of Chengdu around its overall relocation. Methods The First People’s Hospital of Longquanyi District of Chengdu was overall relocated on December 31st, 2016. The detection rates of MDROs and the changes in nosocomial infections before the relocation (from 2015 to 2016) and after the relocation (from 2017 to 2020) were retrospectively analyzed. Results A total of 83634 qualified specimens were submitted for inspection, 8945 strains of pathogenic bacteria were detected, and the detection rate of pathogenic bacteria was 10.70%, showing an increasing trend in yearly detection rates of pathogenic bacteria (χ2trend=8.722, P=0.003); among them, 1551 MDRO strains were detected, and the detection rate of MDROs was 17.34%, showing an increasing trend in yearly detection rates of MDROs (χ2trend=11.140, P=0.001). The detection rate of pathogenic bacteria before relocation was lower than that after relocation, and the difference was statistically significant (9.64% vs. 11.08%; χ2=35.408, P<0.001); there was no significant difference in the detection rate of MDROs before and after relocation (16.32% vs. 17.66%; χ2=2.050, P=0.152). From 2015 to 2020, the detection rates of pathogenic bacteria from sputum+throat swab specimens (χ2trend=81.764, P<0.001) and secretion+pus specimens (χ2trend=56.311, P<0.001) showed increasing trends, while the detection rates of pathogenic bacteria from blood specimens (χ2trend=110.400, P<0.001), urine specimens (χ2trend=11.919, P=0.001), and sterile body fluid specimens (χ2trend=20.158, P<0.001) showed decreasing trends. The MDRO detection rates of Escherichia coli (χ2trend=21.742, P<0.001), Staphylococcus aureus (χ2trend=47.049, P<0.001), and Pseudomonas aeruginosa (χ2trend=66.625, P<0.001) showed increasing trends, while the MDRO detection rates of Klebsiella pneumoniae (χ2trend=2.929, P=0.087) and Acinetobacter baumannii (χ2trend=0.498, P=0.481) showed no statistically linear trend, but the MDRO detection rate of Acinetobacter baumannii dropped significantly in 2017. In the targeted monitored MDROs, the proportions of nosocomial infections in methicillin-resistant Staphylococcus aureus (χ2trend=4.581, P=0.032), carbapenem-resistant Enterobacteriaceae (χ2trend=8.031, P=0.005), and carbapenem-resistant Pseudomonas aeruginosa (χ2trend=6.692, P=0.010) showed decreasing trends; there was no statistically linear trend in the proportion of nosocomial infections in carbapenem-resistant Acinetobacter baumannii (χ2trend=0.597, P=0.440); only one strain of vancomycin-resistant Enterococcus was detected in 2017, and no nosocomial infection occurred. Conclusions The overall detection rate of pathogenic bacteria and MDROs in this tertiary general hospital around relocation showed increasing trends year by year. The detection rate of pathogenic bacteria after relocation was higher than that before relocation, but the detection rate of MDROs after relocation did not differ from that before relocation. The proportion of nosocomial infections among the targeted monitored MDROs decreased.
ObjectiveTo optimize procedures of going out for examination for patients with multidrug-resistant organism, strengthen prevention and control management of nosocomial infection, and prevent nosocomial infection.MethodsPatients with multidrug-resistant organism who went out for examination were selected from April to November 2018. April to July 2018 (before implementation) was process construction stage, and August to November 2018 (after implementation) was process optimization implementation stage. In April 2018, process and management system of going out for multidrug-resistant organism patients were formulated, training of transporters was strengthened, and measures such as checklist identification, accompany patients for examination, patient handover, isolation and protection, and disinfection of materials were implemented, to realize the infection prevention and control management in the whole process of going out for multidrug-resistant organism patients. We compared relevant indicators before and after implementation.ResultsA total of 262 cases times of patients with multidrug-resistant organism were included, including 134 cases times before implementation and 128 cases times after implementation. Compared with before implementation, the hand hygiene, wearing gloves, disinfection of inspection instruments and articles, patient transfer, isolation measures in waiting process (special elevator, isolation after waiting for inspection, arrange inspection time reasonably), education and training after implementation improved(P<0.05). Before and after implementation, the Methicillin resistant staphylococcus aureus detection rate difference was statistically significant (P<0.05).ConclusionsThe optimization of procedures of examination for patients with multidrug-resistant organism can increase implementation rate of indirect indicators such as hand hygiene, disinfection of inspection instruments and articles, isolation and protection, education and training in the prevention and control of multidrug-resistant organism in nosocomial infection. And it is important for the prevention and control of multi-disciplinary collaboration of multidrug-resistant organism.
ObjectiveTo analyze the risk factors of multidrug-resistant organism (MDRO) nosocomial infection, and to provide the scientific basis for the prevention and control of MDRO nosocomial infection.MethodsPatients with MDRO in Chengdu Shangjin Nanfu Hospital from 2014 to 2015 were retrospectively collected. The patients were divided into the MDRO nosocomial infection group and the MDRO non-nosocomial infection group. The MDRO infection/colonization, bacterial strain type, specimens type and distribution characteristics of clinical departments were analyzed. Single factor and multiple factor logistic regression analysis were used to analyze the risk factors of MDRO nosocomial infection.ResultsA total of 357 patients of MDRO infection/colonization were monitored, of which 147 times (144 patients) were with nosocomial infections and 213 times (213 patients) were without nosocomial infections. MDRO nosocomial infection incidence rate/cases incidence rate were 0.18%. A total of 371 MDRO bacterial strains were detected, of which 147 (39.62%) were with nosocomial infection and 224 (60.38%) were without nosocomial infections. The MDRO non-nosocomial infections included 175 strains (47.17%) in community infection and 49 strains (13.12%) in colonization. Carbapenem-resistant Acinetobacter baumannii (52.83%) was the main MDRO strains. Sputum (57.14%) and secretion (35.04%) were main specimens. The top three departments of MDRO nosocomial infection strains were orthopedics (32.65%), ICU (27.89%), neurosurgery (13.61%). ICU [odds ratio (OR)=3.596, 95% confidence interval (CI) (1.124, 11.501), P=0.031], surgical history [OR=2.858, 95%CI (1.061, 7.701), P=0.038], indwelling urinary catheter [OR=3.250, 95%CI (1.025, 10.306), P=0.045], and using three or more antibiotics [OR=4.228, 95%CI (1.488, 12.011), P=0.007] were the independent risk factors of MDRO nosocomial infection.ConclusionEffective infection prevention and control measures should be adopted for the risk factors of MDRO nosocomial infection to reduce the incidence rate of MDRO nosocomial infection.
Liver transplantation is a most curative treatment for end-stage liver diseases. However, postoperative infection, especially the multi-drug resistant organisms infection, could contribute to the mortality after liver transplantation. Therefore, how to identify and prevent multi-drug resistant bacterial infection is the key to achieve improved postoperative outcomes after liver transplantation. The team of West China Hospital of Sichuan University, in collaboration with multiple Chinese medical centers, draw on the mature experiences of advanced countries in the field of transplantation jointly formulated the “Multicenter expert consensus on prevention and treatment of infections caused by multi-drug resistant organisms after liver transplantation”. The consensus had been developed around aspects such as epidemiological characteristics, antimicrobial uses, and prevention measurements of multi-drug resistant bacterial infection after liver transplantation.