ObjectiveTo explore the clinical efficacy and safety of ultrasound-guided intra-articular injection of platelet-rich plasma (PRP) in the treatment of avascular necrosis of the femoral head.MethodsWe retrospectively collected and analyzed the clinical characteristics, imaging data, and clinical outcomes of patients with femoral head necrosis who received ultrasound-guided intra-articular PRP injection in the Department of Rehabilitation Medicine of Sun Yat-sen Memorial Hospital, Sun Yat-sen University between June 2019 and June 2020. All the patients received 4 injections at one-week intervals. The Visual Analogue Scale (VAS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC), and Harris Hip Joint Function Scale (HHS) were evaluated before treatment and 1 month, 3 months, and 6 months after the first injections. Adverse events were recorded. The normally distributed data were presented as mean±standard deviation, and analyzed by one-way repeated measures analysis of variance; the non-normally distributed data were presented as median (lower quartile, upper quartile), and analyzed by Friedman test.ResultsA total of 29 patients were included. According to the Association Research Circulation Osseous classification standard, 2 patients were classified as stageⅠ, 11 as stageⅡ, 11 as stage Ⅲ, and 5 as stage Ⅳ. Before treatment and 1 month, 3 months, and 6 months after treatment, the VAS scores were 7.0 (5.5, 8.0), 4.0 (3.0, 5.0), 3.0 (2.0, 3.0), and 3.0 (2.0, 5.0), respectively, the WOMAC scores were 39.27±11.70, 28.34±8.08, 22.82±6.09, and 24.13±7.55, respectively, and the HHS were 46.0 (40.0, 64.0), 71.0 (57.5, 75.0), 78.0 (68.0, 80.5), and 78.0 (64.0, 80.0), respectively. The time effects in VAS (χ2=65.423, P<0.001), WOMAC (F=46.710, P<0.001), and HHS (χ2=66.347, P<0.001) were all statistically significant. There were significant differences in each index between the values 1 month, 3 months, and 6 months after treatment and those before treatment respectively, and there was also a significant difference in each index between the value 1 month after treatment and that 3 months after treatment (P<0.05). There was no significant difference in any indicator between the value 6 months after treatment and that 3 months after treatment (P>0.05). Significant difference was shown between the value 6 months after treatment and that 1 month after treatment in WOMAC (P=0.016), but not in VAS or HHS (P>0.05). No obvious adverse event was reported during the follow-up period.ConclusionsUltrasound-guided intra-articular PRP injection can effectively alleviate the pain and improve the hip joint function of patients with femoral head necrosis for at least 6 months. However, randomized controlled studies with a larger sample size and longer-term follow-up are needed in the future to confirm the efficacy and safety of PRP injection in femoral head necrosis.
OBJECTIVE: To study the effect of platelet-rich plasma in the repair of bone defect. METHODS: Segmental bone defects of 1 cm were created in the mid-upper part of bilateral radius of 24 New Zealand white rabbits. One side was randomly chosen as the experimental side, which was filled with artificial bone with platelet-rich plasma (PRP). The other side filled with artificial bone without PRP as the control. After 2, 4, 8 and 12 weeks of implantation, the gross, radiological, histological observations, and computer graphic analysis were performed to investigate the bone healing of the defect in both sides. RESULTS: Two weeks after operation, new bone and fibrous tissue formation in both the experimental and the control sides were observed only in the areas adjacent to the cut ends of the host bone, but the amount of new tissue in the experimental side was much more than that in the control side. In the 4th and 8th weeks, the surface of the artificial bone was covered with a large amount of new bones, the artificial bone was bridged tightly with the host bone by callus in the experimental side, while new bone was limited mainly in the cut ends and was less mature in the control side. In the 12th weeks, bone defects were entirely healed in the experimental side, which were covered completely with cortical bone, while new bone formation was only observed in the ends of artificial bone and there were not continuous bone callus on the surface in the control side. CONCLUSION: Artificial bone with PRP is effective in the repair of segmental bone defects, and PRP could improve the healing of bone defect.
Objective To calculate the recovery rate and enrichment factor and to analyse the correlation by measuring the concentrations of platelets, leukocyte, and growth factors in platelet-rich plasma (PRP) so as to evaluate the feasibil ity and stabil ity of a set of PRP preparation. Methods The peripheral blood (40 mL) was collected from 30 volunteers accorded with the inclusion criteria, and then 4 mL PRP was prepared using the package produced by Shandong Weigao Group Medical Polymer Company Limited. Automatic hematology analyzer was used to count the concentrations of platelets and leukocyte in whole blood and PRP. The enrichment factor and recovery rate of platelets or leukocyte were calculated; the platelet and leukocyte concentrations of male and female volunteers were measured, respectively. The concentrations of platelet-derived growth factor (PDGF), transforming growth factor β (TGF-β), and vascular endothel ial growth factor (VEGF) were assayed by ELISA. Results The platelet concentrations of whole blood and PRP were (131.40 ± 29.44) × 109/L and (819.47 ± 136.32) × 109/L, respectively, showing significant difference (t=—27.020, P=0.000). The recovery rate of platelets was 60.85% ± 8.97%, and the enrichment factor was 6.40 ± 1.06. The leukocyte concentrations of whole blood and PRP were (5.57 ± 1.91) × 1012/L and (32.20 ± 10.42) × 1012/L, respectively, showing significant difference (t=—13.780, P=0.000). The recovery rate of leukocyte was 58.30% ± 19.24%, and the enrichment factor was 6.10 ± 1.93. The concentrations of platelets and leukocyte in PRP were positively correlated with the platelet concentration (r=0.652, P=0.000) and leukocyte concentration (r=0.460, P=0.011) in whole blood. The concentrations of platelet and leukocyte in PRP between male and female were not significantly different (P gt; 0.05). The concentrations of PDGF, TGF-β, and VEGF in PRP were (698.15 ± 64.48), (681.36 ± 65.90), and (1 071.55 ± 106.04) ng/ mL,which were (5.67 ± 1.18), (6.99 ± 0.61), and (5.74 ± 0.83) times higher than those in the whole blood, respectively. PDGF concentration (r=0.832, P=0.020), TGF-β concentration (r=0.835, P=0.019), and VEGF concentration (r=0.824, P=0.023) in PRP were positively correlated with platelet concentration of PRP. Conclusion PRP with high concentrations of platelets, white blood cells and growth factors can be prepared stably by this package.
Objective To study the effects of platelet-rich plasma(PRP) on the proliferation and osteogenetic activity of the marrow mesenchymal stem cells(MSCs) cultured in vitro to elucidate the cellular and molecularmechanism by which PRP accelerates bone repair.Methods The human MSCs were cultured in vitro and randomly divided into the experimental group(n=9) and control group(n=9). In the experimental group, the MSCs were interfused with PRP(10 μl/ml culture media). The proliferation ability of the cells was tested by flow cytometry and MTT, the osteogenetic activity by alkaline phosphatase(ALP) measuring and tetracycline fluorometry, and cbfal mRNA expression by reverse transcriptPCR.Results PRP could stimulate the MSCs proliferation. The flow cytometry assay showed that the MSCs proportion of S period of the experimental group significantly increased 14.5±0.4 in comparison with that of the control group 7.2±0.5 (P<0.01) after 24 hours. MTT value showed that MSCs proliferatedto platform period earlier in the experimental group than in the control group. There was a significant increase in ALP activity of the experimental group 7.79±1.98,9.51±2.31and 14.03±3.02 when compared with that of the control group 2.06±0.77,2.84±0.82 and 2.58±0.84 after 3, 6 and 9 days(P<0.05). The number of mineral nodes increased. Reverse transcript-PCR showed that the expression of cbfal mRNA were elevated gradually at 2,4 and 8 hours after interfused with PRP.Conclusion The effect of PRP on accelerating bone repair is related to its effects on stimulating the proliferation of MSCs, increasing the cbfal expression and promoting the osteogenetic activity.
【Abstract】 Objective To find out the best method to prepare platelet-rich plasma (PRP) and to evaluate the effect of PRP gel on skin flap survival and its mechanism. Methods Totally, 72 Wistar rats (aged 12 weeks, weighing 250-300 g) were used for the experiment. The arterial blood (8-10 mL) were collected from the hearts of 24 rats to prepare PRP with three kinds of centrifuge methods: in group A, 200 × g centrifuge for 15 minutes, and 500 × g centrifuge for 10 minutes;in group B, 312 × g centrifuge for 10 minutes, and 1 248 × g centrifuge for 10 minutes;and in group C, 200 × g centrifuge for 15 minutes, and 200 × g centrifuge for 10 minutes. The platelet was counted in the whole blood, PRP, and platelet-poor plasma (PPP) to determine an ideal centrifuge. PRP, PPP, and the serum after first centrifuge were collected. The concentrations of platelet-derived growth factor BB (PDGF-BB) and transforming growth factor β1 (TGF-β1) were measured in the PRP, PPP, and serum using the enzyme-linked immunosorbent assay method, and PRP and PPP gels were prepared. The flaps of 11 cm × 3 cm in size were elevated on the back of 48 rats, which were divided into 3 groups: PRP gel (PRP group, n=16) and PPP gel (PPP group, n=16) were injected, no treatment was given in the control group (n=16). The flap survival rate was measured at 7 days. Histological and real-time PCR were used to count the inflammatory cells and blood vessel density, and to detect the expressions of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), PDGF-AA, and PDGF-BB mRNA at 8 hours, 24 hours, 3 days, and 7 days. Results Platelet counting showed platelet in group A was the highest. ELISA evaluation showed that the concentrations of TGF-β1 and PDGF-BB were significantly higher in PRP than in PPP and serum (P lt; 0.05). The flap survival rate was 61.2% ± 9.1% in PRP group, showing significant differences (P lt; 0.05) when compared with that in PPP group (35.8% ± 11.3%) and control group (28.0% ± 5.4%). The inflammatory cells were significantly lower and the blood vessel density was significantly higher in PRP group than in PPP group and control group (P lt; 0.05). When compared with PPP group and control group, the expressions of VEGF and PDGF-BB increased at all time after operation in PRP group; the expression of EGF increased within 24 hours; and the expression of PDGF-AA increased after 3 days. There were significant differences in PDGF-AA mRNA at 3 days and 7 days, PDGF-BB mRNA at 8 hours, VEGF mRNA at 24 hours and 3 days, and EGF mRNA at 24 hours between PRP group and PPP and control groups (P lt; 0.05). Conclusion 200 × g centrifuge for 15 minutes and 500 × g centrifuge for 10 minutes is the best PRP preparation method. PRP can improve the skin flap survival by regulating the genes involved in angiogenesis.
Objective To explore the effect of the platelet-rich plasma (PRP) on proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells (MSCs) in China goat in vitro. Methods MSCs from the bone marrow of China goat were cultured. The third passage of MSCs were treated with PRP in the PRP group (the experimental group), but the cells were cultured with only the fetal calf serum (FCS) in the FCS group (the control group). The morphology and proliferation of the cells were observed by an inverted phase contrast microscope. The effect of PRP on proliferation of MSCs was examined by the MTT assay at 2,4,6 and 8 days. Furthermore, MSCs were cultured withdexamethasone(DEX)or PRP; alkaline phosphatase (ALP) and the calcium stainingwere used to evaluate the effect of DEX or PRP on osteogenic differatiation of MSCs at 18 days. The results from the PRP group were compared with those from the FCS group. Results The time for the MSCs confluence in the PRP group was earlier than that in the FCS group when observed under the inverted phase contrast microscope. The MTT assay showed that at 2, 4, 6 and 8 days the mean absorbance values were 0.252±0.026, 0.747±0.042, 1.173±0.067, and 1.242±0.056 in the PRP group, but 0.137±0.019, 0.436±0.052, 0.939±0.036, and 1.105±0.070 in the FCS group. The mean absorbance value was significantly higher in the PRP group than in the FCS group at each observation time (P<0.01). Compared with the FCS group, the positive-ALP cells and the calcium deposition were decreased in the PRP group; however, DEX could increase boththe number of the positiveALP cells and the calcium deposition. Conclusion The PRP can promote proliferation of the MSCs of China goats in vitro but inhibit osteogenic differentiation.
Objective To study the effect of serum rich in growth factors (SRGF) derived from plateletrich plasma (PRP) on the biological function of human and rat osteoblast.Methods PRP and platelet-poor plasma (PPP) obtained from healthy human and SD rat were activated by thrombin toget SRGF and serum poor in growth factors (SPGF). The level of TGFβ1 and PDGF-AB in human-SRGF and SPGF were assayed by enzyme-linked immunoassay(ELISA). Rat and human osteoblast were cultured and identified. Rat osteoblasts were treated with 5% rat-SRGF, 5% rat-SPGF and serumfree F12 medium, respectively. And human osteoblast were treated with 5% human-SRGF, 5% human-SPGF and serumfree DMEM. Cellular mitogenic activity was evaluated by thiazoly blue (MTT) colorimetric assay at 24, 48, 72 and 96hours.Results The level of TGF-β1 in human-SRGF was 307.67±35.57 ng/ml, and that of PDGF-AB was 52.76±7.89 ng/ml. The proliferation of rat and human osteoblast were promoted after treated with rat-SRGFand human-SRGF, respectively. In rat osteoblast groups, there were significant differences in absorbency between ratSPGF group and rat-SRGF group at 48 and 96 hours(Plt;0.05). In human osteoblast groups, the differences between human-SPGF group and human-SRGF group were significant at 48, 72 and 96 hours(Plt;0.05). The proliferation of these two kinds of osteoblasts almost stopped in serum-free medium, and the differences in absorbency , compared with othergroups,were significant (Plt;0.05). Conclusion High quality of PRP can be achieved by the improved method and SRGF is capable of up-regulating the proliferation of rat osteoblast and human osteoblast.
Objective To investigate the factors that affect platelet-rich plasma (PRP) in promoting bone regeneration and repairing. Methods Recent l iterature was reviewed, concerning the preparations of PRP, physiological mechanism and the latest appl ications in orthopedic field. Results PRP, the concentrated body of autologous platelet, was rich in platelets and was the source of autologous growth factors. Many studies had shown that PRP played an important role in promoting bone regeneration and repairing. However, a few experimental results contradicted this point. The reason might be that the biological properties of PRP were influenced by various factors, such as workmanship, vector, activation schemes, working concentration, individual difference. Conclusion The concentration and qual ity of platelet and other related factorsof PRP affect the rel iabil ity of the results and conclusions. So an efficient and stable production method of PRP should beestabl ished.
Objective Platelet-rich plasma (PRP) can enhance the chondrocyte prol iferation and repair of cartilage defects. To explore the safety and efficacy of intra-knee-articular injection of PRP to treat knee articular cartilage degeneration by comparing with injecting sodium hyaluronate (SH). Methods Thirty consecutive patients (30 knees) with knee articular cartilage degeneration were selected between January 2010 and June 2010. According to different injections, 30 patients wererandomly divided into PRP group (test group, n=15) and SH group (control group, n=15). There was no significant difference in gender, age, body mass index, and Kellgren-Lawrence grade between 2 groups (P gt; 0.05). Test group received 3.5 mL of PRP intra-knee-articular injections while control group received 2 mL of SH during the same time period. Both treatments were administered in series of 3 intra-knee-articular injections at 3-week intervals. Then, adverse reactions were recorded. International Knee Documentation Committee (IKDC) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, and Lequesne index were used for evaluation of treatment results. Results The patients of 2 groups were followed up 6 months. There were significant differences in IKDC score, WOMAC score, and Lequesne index between pre- and post-injection in 2 groups (P lt; 0.05); no significant difference was found between different time points (3, 4, and 6 months) in test group (P gt; 0.05), while significant differences were found between the postoperative 6th month and the postoperative 3rd and 4th months in control group (P lt; 0.05). There was no significant difference in IKDC score, WOMAC score, and Lequesne index between 2 groups within 4 months (P gt; 0.05), but the effectiveness of test group was significantly better than that of control group at 6 months after injection (P lt; 0.05). Adverse reactions occurred in 12 patients (31 injections) of test group and in 12 patients (30 injections) of control group. No significant difference in onset time, termination time, and duration of adverse reactions were found between 2 groups (P gt; 0.05). Conclusion Intra-knee-articular injection of PRP to treat knee articular cartilage degeneration is safe, which can alleviate symptoms of pain and swell ing and improve the qual ity of l ife of patients; however, further data of large samples and long-term follow-up are needed to confirm the safety and effectiveness.
ObjectiveTo identify a more popularized preparation protocol of leukocytes-rich platelet-rich plasma (L-PRP) for higher tolerance rate.MethodsThe peripheral blood samples of 76 volunteers (45.0 mL/case) were mixed with 5 mL sodium citrate injection for blood transfusion, and L-PRP was prepared by twice centrifugations. All blood samples were divided into three groups according to the parameters of twice centrifugation: experimental group A (12 cases, 400×g, 10 minutes for the first time and 1 100×g, 10 minutes for the second time), experimental group B (27 cases, 800×g, 10 minutes for the first time and 1 100×g, 10 minutes for the second time), and control group (37 cases, 1 360×g, 10 minutes for the first time and 1 360×g, 10 minutes for the second time). The platelet recovery rate and platelet and leukocyte enrichment coefficient of L-PRP in each group were calculated and compared.ResultsAfter removal of abnormal blood samples (platelet recovery rate was more than 100% or white thrombus), the remaining 55 cases were included in the statistical analysis, including 10 cases in experimental group A, 21 cases in experimental group B, and 24 cases in control group. The platelet enrichment coefficient and platelet recovery rate of experimental group B were significantly higher than those of experimental group A and control group (P<0.05); there was no significant difference between experimental group A and control group (P>0.05). There was no significant difference in leukocyte enrichment coefficient between experimental groups A, B, and control group (P>0.05).ConclusionThe preparation quality of PRP is affected by various factors, including centrifugal force, centrifugal time, temperature, and operation process, etc. Twice centrifugation (800×g, 10 minutes for the first time and 1 100×g, 10 minutes for the second time) is an ideal and feasible centrifugation scheme, which can obtain satisfactory platelet recovery rate and enrichment coefficient with thicker buffy coat, which can reduce the fine operation requirements for operators, improve the fault tolerance rate and generalization.