Objective To discuss the effects of the temporoparietal fascial flap and the postauricular fascial flap as the materials to cover the postauricular-frame during the second stage operation of the total auricular reconstruction Methods From June 2005 to May 2007, the second stage elevation of the reconstructed auricle was performed at 6-10 months after the first stage total auricular reconstruction for 72 cases (left 31, right 41), 47 males and 25 females, aged 5-28 years old (12on average). According to the Nagata’s classification, 56 cases were lobule-type microtia with no external auditory canal, and the other 16 cases were concha-type microtia with external auditory canal (narrow in 9 cases). Homolateral temporoparietal fascial flap was used to cover the postauricular-frame in 29 patients (group A), and the homolateral postauricular fascial flap was used in the other 43 patients (group B). Results All the patients were followed up for 3-22 months. A total of 55 cases had excellent skin flap and fascial flap (22 in group A and 33 in group B). Darker epidermis could be seen in 15 cases (6 in group A and 9 in group B), and it healed within one month after the operation. Two cases (1 in group A and 1 in group B) suffering from partial grafted skin and fascial flap necrosis (lt; 1 cm2) healed by means of coverage of local flap transfer. All the patients’ reconstructed auriculocephal ic angles were close to the normal side. There existed scars of varying degrees at the area of skin graft in both groups: 47 cases had flat scars (19 in group A and 28 in group B); 18 cases had hyperplastic scars (7 in group A and 11 in group B); and 7 cases had severe scars with the auriculocephal ic angles draw-off (3 in group A and 4 in group B). Furthermore, there were obvious scars in temporal region and severe hair thinning at the donor site in group A, but there were no such conditions in group B. At 6 months of follow-up, reduction of the auriculocephal ic angle occurred in 3 cases of group A and obvious in 5 cases of group B (gt; 0.5 cm). Conclusion Both the temporoparietal fascial flap and the postauricular fascial flap can be appl ied to cover the postauricular-framework in the second stage reconstructed ear elevation, with superiority of the latter over the former.
Objective To investigate the method and effectiveness of two-stage operation of auricular reconstruction in treating lobule-type microtia. Methods Between March 2007 and April 2010, 19 patients (19 ears) of lobule-type microtia were treated. There were 13 males and 6 females, aged 5 to 27 years (mean, 12.6 years). Of 19 patients, 11 were less than or equalto 14 years old. The locations were left ear in 9 cases and right ear in 10 cases. Two-stage operation for auricular reconstruction of lobule-type microtia included fabrication and grafting of the costal cartilage framework at the first-stage operation and the ear elevation operation at the second-stage operation. Results Pseudomonas aeruginosa infection occurred in 1 patient after the first-stage operation, who was not given the second-stage operation. Skin necrosis occurred in 1 patient 8 days after the secondstage operation and healed after symptomatic treatment. Eighteen patients were followed up 6 months to 2 years (mean,14 months). Retraction of cranioauricular angle and thoracic deformity occurred in 1 patient. The surgical results were satisfactory in the other 17 patients whose reconstructive ear had verisimilar shape and suitable cranioauricular angle. Conclusion Twostage operation of auricular reconstruction is considered to be an ideal method for lobule-type microtia.
ObjectiveTo investigate the application and effectiveness of split-thickness scalp graft and temporoparietal fascia flap in the low hairline auricle reconstruction in microtia patients. MethodsBetween July 2010 and April 2015, 23 patients with low hairline microtia (23 ears) underwent low hairline auricle reconstruction. There were 16 males and 7 females with the mean age of 12 years (range, 6-34 years). The left ear was involved in 10 cases, and the right ear in 13 cases. There were 18 cases of lobule-type, 4 cases of concha-type, and 1 case of small conchatype. Referring to Nagata's two-stage auricular reconstruction method, the first stage operation included fabrication and grafting of autogenous costal cartilage framework; after 6 months, second stage operation of depilation and formation of cranioauricular sulcus was performed. The split-thickness scalp was taken from the part of the reconstructive ear above hairline. The hair follicles and subcutaneous tissue layers in hair area were cut off during operation. The area of depilation and auriculocephalic sulcus were covered with temporoparietal fascia flap. Then split-thickness skin was implanted on the surface of temporoparieta fascia flap. ResultsAll operations were successfully completed. Healing of incision by first intention was obtained, without related complication. The patients were followed up 6-20 months (mean, 12 months). The reconstructed ear had satisfactory appearance and had no hair growth. ConclusionThe application of splitthickness scalp graft and temporoparietal fascia flap in low hairline auricle reconstruction in microtia patients can achieve satisfactory results.
ObjectiveTo summarize clinical experience and curative effect in applying three-dimensional mechanical equilibrium concept to cartilage scaffold construction in total auricular reconstruction.MethodsBetween June 2015 and June 2017, ninety-seven microtia patients (102 ears) were treated with total ear reconstruction by using tissue expanders. The patients included 43 males and 54 females and their age ranged from 7 to 45 years with an average of 14 years. There were 92 unilateral cases (45 in left side and 47 in right side) and 5 bilateral ones. There were 89 congenital cases and 8 secondary cases. According to microtia classification criteria, there were 21 cases of type Ⅱ, 67 cases of type Ⅲ, and 9 cases of type Ⅳ. Tissue expander was implanted in the first stage. In the second stage, autogenous cartilage was used to construct scaffolds which were covered by enlarged flap. According to the three-dimensional mechanical equilibrium concept, the stable ear scaffold was supported by the scaffolds base, the junction of helix and inferior crura of antihelix, and helix rim. The reconstructed ears were repaired in the third stage operation.ResultsAll patients had undergone ear reconstruction successfully and all incisions healed well. No infection, subcutaneous effusion, or hemorrhage occurred after operation. All skin flaps, grafts, and ear scaffolds survived completely. All patients received 5- to 17-month follow-up time (mean, 11.3 months) and follow-up time was more than 12 months in 61 cases (64 ears). All reconstructed ears stood upright, and subunits structure and sensory localization of reconstructed ears were clear, and the position, shape, size, and height of bilateral ears were basically symmetrical. Mastoid region scar hyperplasia occurred in 3 patients, which was relieved by anti-scar drugs injection. No scaffolds exposure, absorption, or structural deformation occurred during follow-up period.ConclusionApplication of three-dimensional mechanical equilibrium concept in cartilage scaffold construction can reduce the dosage of costal cartilage, obtain more stable scaffold, and acquire better aesthetic outcomes.
ObjectiveTo explore the anthropometric changes of the auricle after auricular cartilage unfolding in moderate concha-type microtia patients, so as to provide the basis to help evaluate surgical timing and prognostic.MethodsA total of 33 children with moderate concha-type microtia, who were treated with auricular cartilage unfolding between October 2016 and September 2018 and met the inclusive criteria, were included in the study. There were 24 boys and 9 girls with an average age of 1.4 years (range, 1-3 years). Sixteen cases were left ears and 17 cases were right ears. The follow-up time was 12-23 months (mean, 17.5 months). The affected auricular detailed structures were observed and quantitatively analyzed before operation and at immediate after operation. The width, length, and perimeter of auricle before operation and at immediate after operation and at last follow-up were noted with three dimensional-scanning technology. The normal auricle was noted as control.ResultsThere were (7.5±1.0) and (11.3±0.8) structures of the affected auricle at pre- and post-operation, respectively, showing significant difference between pre- and post-operation (t=23.279, P=0.000). The length, width, and perimeter of the affected auricle constantly increased after operation, and there were significant differences between pre-operation and immediately after operation and between immediately after operation and last follow-up (P<0.05). The differences of length, width, and perimeter of the affected auricle between immediately after operation and last follow-up were (3.13±1.44), (2.44±0.92), and (8.50±3.76) mm, respectively. And the differences of length, width, and perimeter of the normal auricle between pre-operation and last follow-up were (3.16±1.54), (2.35±0.86), and (9.79±4.60) mm, respectively. There was no significant difference in the differences of length, width, and perimeter between the affected auricle and the normal auricle (P>0.05).ConclusionThe auricular cartilage unfolding in treatment of the moderate concha-type microtia can receive more ear structures and increase auricle sizes, which make it possible for free composite tissue transplantation. In addition, the affected and the contralateral normal auricles have a very similar growth rate and it offers the theoretical foundation for the early treatment for moderate concha-type microtia.
【Abstract】 Objective To summarize different treatments of the residual ear in auricular reconstruction, toinvestigate the reasonable appl ications of the residual ear. Methods From September 2005 to July 2006, 128 patients(79 males, 49 females; aging 5-21 years with an average of 11 years)with unilateral microtia underwent the staged repair. In the patients, there were 44 cases of left-unilaterally microtia and 84 cases of right-unilaterally microtia. The residual ears looked l ike peanut in 56 patients, l ike sausage in 35 patients, l ike boat in 27 patients, and l ike shells in 10 patients. Among all the patients, the external acoustic meatus was normal in 5 patients, stenosis in 11 patients, and atresia in 112 patients. According to auricular developmental condition, the patients were divided into three types: 17 cases of type I, 98 cases of type II, and 13 cases of type III. In the first stage operation, a 50 mL kidney-l iked expander was implanted into post aurem subcutaneous tissue. The residualear whose superior extremity was close to the hair l ine was treated. The middle and superior part of the residual ear was cut. The redundant residual auricular cartilage was removed. In the second stage operation, the inferior part of the cartilage frame was covered by the middle and superior part of the residual ear. According to the location of the residual ear, “V-Y” plasty, “Z”-plasty and reversal of the residual ear were used to correct the location of the residual ear. In the third stage operation, the remained residual ear was used to reconstruct crus of hel ix or cover the wound surface which was resulted from repairing the reconstructed ear. Results The residual ears which were reshaped and transferred had good blood circulation. All residual ears were survival. The wounds healed by first intention. The follow-up for 8-15 months showed that the auricular lobule of the reconstructed ear was turgor vital is and natural. The locations of the reconstructed ear and normal side ear were symmetry. The auricular lobules of the reconstructed ear survived well. The reconstructed crus of hel ix, hel ix, antihel ix and triangular fossawere clear. The results were satisfactory. Conclusion Using residual ear reasonably is an important procedure of successful auricular reconstruction and the symmetry of the reconstructed ear and uninjured side ear.
From Sept 1989 to Dec 1993, the auricular composite graft carrying a piece of postauriclar skin with subdermal vascular network was used to repair 7 cases having defects of nasal alar or tip and 1 having microtia. The width of the composite grafts ranged from 1.8cm to 2.6cm, and the size of the postauricular skin rangedfrom 0.08×1cm2 to 2.2×2.5cm2. All cases gained successful results. The mechanism of survival of the composite grafts, and the essential points in operation were detailed.