Objective To compare the effect of small intestinal submucosa(SIS)and polypropylene mesh(PPM) on repairing abdominal wall defects in rats, and toprobe into the feasibility of using SIS to repair the abdominal wall defects. Methods 100 SD rats(50 males and 50 females)were randomly divided into 2 groups(n=50). Their weight ranged from 200 to 250 g.Full thickness abdominal wall defects (2 cm×2 cm) were created by surgery and were repaired with SIS and PPM respectively. At different postoperative time (1st, 2nd, 4th, 8th and 12th week), animals were sacrificed to make histological observation. The tensile strengthand the development of adhesions were measured and observed. Results 95 animals survived and were healthy after surgery. No inflammatory response and obvious immunoreaction were observed in both groups. One week after operation, the tensile strengthof abdominal wall in SIS group (204.30±5.13 mmHg) was lower than that in PPMgroup(240.0±10.0 mmHg) at 1st week(P<0.05),and there were no difference at 4th, 8th, 12th week. Adhesions were more marked in PPM group thanthat in SIS group(P<0.05). Conclusion Both SIS and PPM are histologically compatible when used in rats and can maintain sufficient tensile strength. SIS is superior to PPM in regards to tissue compatibility and adhesion formation.
ObjectiveTo evaluate the effect of tissue engineered periosteum on the repair of large diaphysis defect in rabbit radius, and the effect of deproteinized bone (DPB) as supporting scaffolds of tissue engineering periosteum. MethodsBone marrow mesenchymal stem cells (BMSCs) were cultured from 1-month-old New Zealand Rabbit and osteogenetically induced into osteoblasts. Porcine small intestinal submucosa (SIS) scaffold was produced by decellular and a series mechanical and physiochemical procedures. Then tissue engineered periosteum was constructed by combining osteogenic BMSCs and SIS, and then the adhesion of cells to scaffolds was observed by scanning electron microscope (SEM). Fresh allogeneic bone was drilled and deproteinized as DPB scaffold. Tissue engineered periosteum/DPB complex was constructed by tissue engineered periosteum and DPB. Tissue engineered periosteum was "coat-like" package the DPB, and bundled with absorbable sutures. Forty-eight New Zealand white rabbits (4-month-old) were randomly divided into 4 groups (groups A, B, C, and D, n=12). The bone defect model of 3.5 cm in length in the left radius was created. Defect was repaired with tissue engineered periosteum in group A, with DPB in group B, with tissue engineered periosteum/DPB in group C; defect was untreated in group D. At 4, 8, and 12 weeks after operation, 4 rabbits in each group were observed by X-ray. At 8 weeks after operation, 4 rabbits of each group were randomly sacrificed for histological examination. ResultsSEM observation showed that abundant seeding cells adhered to tissue engineered periosteum. At 4, 8, and 12 weeks after operation, X-ray films showed the newly formed bone was much more in groups A and C than groups B and D. The X-ray film score were significantly higher in groups A and C than in groups B and D, in group A than in group C, and in group B than in group D (P<0.05). Histological staining indicated that there was a lot of newly formed bone in the defect space in group A, with abundant newly formed vessels and medullary cavity. While in group B, the defect space filled with the DPB, the degradation of DPB was not obvious. In group C, there was a lot of newly formed bone in the defect space, island-like DPB and obvious DPB degradation were seen in newly formed bone. In group D, the defect space only replaced by some connective tissue. ConclusionTissue engineered periosteum constructed by SIS and BMSCs has the feasibility to repair the large diaphysis defect in rabbit. DPB isn't an ideal support scaffold of tissue engineering periosteum, the supporting scaffolds of tissue engineered periosteum need further exploration.
Objective To explore the possibility of small intestinal submucosa (SIS) for reconstruction of urethral defect. 〖WTHZ〗Methods Twenty-four male rabbits weredivided into 4 groups: group A (the tubulate SIS graft for urethral repair), group B (control group, urethral tubulate defect), group C (the SIS patch graft forurethral repairs), group D (control group, urethral part defect). Then the regenerative segment was studied with histological technique by hematoxylineosin straining and immunohistological straining for α-actin after 6 and 12 weeks postoperatively. The retrograde urethrography and urodynamics were used to evaluate the function of the regenerative urethra at 12 weeks after operation. Results In groups A and C, at 6 weeks after operation, the luminal surface of matrix was completely covered by urothelium, minimal SIS graft was observed in the extracellular matrix, new smooth-muscle cells was confirmed; however, more inflammatory cells were observed in the host-matrix anastomosis in group A than in group C. At 12 weeks postoperatively, the regenerative tissue was equivalent to the normal urethral tissue and SIS disappeared in group C, but some minimal SIS grafts were observed in group A. In groups B and D, urethral strictures and fibrous connective tissue were observed except 3 cases. The urethrography showed wide smooth urethral in group A and C, meawhile urodynamic evaluation didn’t demonstrat significant difference(P>0.05) in the bladder volume and the maximum urethral pressure between preoperation and postoperation in group A or group C. Conclusion SIS can be a useful material for urethral repair in rabbits, the SIS patch graft is superior to the tubulate SIS graft in urethra reconstruction.
Objective To investigate the effect of porcine small intestinal submucosa extracellular matrix (PSISM) on the vitality and gene regulation of hepatocyte so as to lay the experimental foundation for the application of PSISM in liver tissue engineering. Methods The experiment was divided into two parts: ① BRL cells were cultured with 50, 100, and 200 μg/mL PSISM-medium which were prepared by adding PSISM into the H-DMEM-medium containing 10%FBS in groups A1, B1, and C1, and simple H-DMEM-medium served as a control (group D1); ② BRL cells were seeded on 1%, 2%, and 3% PSISM hydrogel which were prepared by dissolving PSISM in sterile PBS solution containing 0.1 mol/L NaOH in groups A2, B2, and C2, and collagen type I gel served as a control (group D2). At 1, 3, and 5 days after culture, the morphology and survival of liver cells were detected by the Live/Dead fluorescent staining. The cell vitality was tested by cell counting kit-8 (CCK-8) assay. And the relative expressions of albumin (ALB), cytokeratin 18 (CK18), and alpha-fetoprotein (AFP) in hepatocytes were determined by real-time fluorescent quantitative PCR (RT-qPCR). Results The Live/Dead fluorescent staining showed the cells survived well in all groups. CCK-8 results displayed that the absorbance (A) value of group C1 was significantly higher than that of group D1 at 5 days after culture with PSISM-medium, and there was no significant difference between groups at other time points (P>0.05). After cultured with PSISM hydrogels, theA values of groups A2, B2, and C2 were significantly higher than those of group D2 at 3 and 5 days (P<0.05), theA value of group A2 was significantly higher than that of groups B2 and C2 at 5 days (P<0.05), but there was no significant difference between groups at other time points (P>0.05). RT-qPCR showed that the relative expressions of ALB and CK18 mRNA significantly increased and the relative expression of AFP mRNA significantly decreased in groups A1, B1, and C1 when compared with group D1 (P<0.05). The relative expression of CK18 mRNA in group C1 was significantly lower than that in groups A1 and B1 (P<0.05). The relative expressions of ALB and CK18 mRNA were significantly higher and the relative expression of AFP mRNA was significantly lower in groups A2, B2, and C2 than group D2 (P<0.05); the relative expression of CK18 mRNA in group A2 was significantly higher than that in group B2 (P<0.05), and the relative expression of AFP mRNA in group A2 was significantly lower than that in group C2 (P<0.05), but no significant difference was found between other groups (P>0.05). Conclusion PSISM has good compatibility with hepatocyte and can promote the vitality and functional gene expression of hepatocyte. PSISM is expected to be used as culture medium supplement or cell carrier for liver tissue engineering.
Objective To explore the possibilityof constructing tissue engineering muscles by combining allogeneic myoblasts with small instestinal submucosa(SIS) in rabbits.Methods A large number of purified myoblasts were obtained with multiprocedure digestion and repeated attachment method from skeletal muscles taken from extremities of immature rabbits which were born 7 days ago. The myoblasts were labeled with BrdU, and then combined with SIS to construct tissue engineering muscles. This kind of tissue engineering muscles were grafted into the gastrocnemius muscle defect (1.5 cm in length, 1.0 cmin width) of fifteen rabbits as the experimental group. The SIS was grafted into the same position in the control group. The rabbits were sacrificed 4, 6, 8 weeks after operation. The tissue engineering muscles were evaluated by macroscopic、histological and immunohistochemical observations, and by quantitative analysis of local immunocyte in the grafting site. Results Allogeneic myoblasts with SIS were combined perfectly in vitro. The SIS was connected tightly to surrounding skeletal muscles and inflammation response was obvious 4 weeks after grafting.The SIS began to break down and inflammation response became slight 6 and 8 weeks after operation. Compared with that of 8th week, the quantitative analysis oflocal immunocyte in 4th and 6th week in both experimental and control group hassignificance(Plt;0.05). Newly formed muscle tissues were found around SIS in the experimental group in 4th, 6th, and 8th week. Expression of BrdU and myosin immunohistochemical staining were positive in the experimental group and negative inthe control group.Conclusion Tissue engineering muscles of rabbits which are constructed by combining allogeneic myoblasts with SIS can survive and proliferate.
OBJECTIVE: To review the research advance of the preparation and characteristics of small intestinal submucosa(SIS). METHODS: Recent original articles related to such aspects of small intestinal submucosa were reviewed extensively. RESULTS: Small intestinal submucosa was an easily obtained biomaterial. SIS was a bio-absorbable and degradable material. SIS had tissue specific regeneration properties. CONCLUSION: SIS is a suitable bio-derived material for tissue engineering of blood vessel, muscle tendon, urinary bladder and abdomen.
ObjectiveTo investigate the feasibility of tissue engineered periosteum (TEP) constructed by porcine small intestinal submucosa (SIS) and bone marrow mesenchymal stem cells (BMSCs) of rabbit to repair the large irregular bone defects in allogenic rabbits. MethodsThe BMSCs were cultivated from the bone marrow of New Zealand white rabbits (aged, 2 weeks-1 month). SIS was fabricated by porcine proximal jejunum. The TEP constructed by SIS scaffold and BMSCs was prepared in vitro. Eighteen 6-month-old New Zealand white rabbits whose scapula was incompletely resected to establish one side large irregular bone defects (3 cm×3 cm) model. The bone defects were repaired with TEP (experimental group,n=9) and SIS (control group,n=9), respectively. At 8 weeks after operation, the rabbits were sacrificed, and the implants were harvested. The general condition of the rabbits was observed; X-ray radiography and score according to Lane-Sandhu criteria, and histological examination (HE staining and Masson staining) were performed. ResultsAfter operation, all animals had normal behavior and diet; the incision healed normally. The X-ray results showed new bone formation with normal bone density in the defect area of experimental group; but no bone formation was observed in control group. The X-ray score was 6.67±0.32 in experimental group and was 0.32±0.04 in control group, showing significant difference (t=19.871,P=0.001). The general observation of the specimens showed bone healing at both ends of the defect, and the defect was filled by new bone in experimental group; no new bone formed in the control group. The histological staining showed new bone tissue where there were a lot of new vessels and medullary cavity, and no macrophages or lymphocytes infiltration was observed in the defect area of experimental group; only some connective tissue was found in the control group. ConclusionTEP constructed by porcine SIS and BMSCs of rabbit can form new bone in allogenic rabbit and has the feasibility to repair the large irregular bone defects.
Objective To investigate the feasibility of using the porcine small intestinal submucosa (SIS) as a kind of the new tissue engineered materials to repair the rat full skin defect. Methods Twenty-eight 6-week-old SD rats weighing 300-350 g were selected in this experimental study. Two 2-cm-diameter round full skin defects were made on the rat back. The upper round defect was used as the blank group, which had no coverings, and the lower round defect was used as the SIS group. SIS that had been produced earlier was transplanted in the defected area. At 3 days, 1, 2, 3, 4, 6 and 8 weeks after the transplantation, the observation was made on the repaired skin conditions, the HE stain, and the repaired skin proportion. Results There was no infection in the two groups. The repairing speed in the SIS group was faster than that in the blank group at 2, 3, 4 and 6 weeks after the transplantation. The skin repaired by SIS was soft and elastic in texture, which had the same high level as the normal skin. The scar tissues in the SIS group were thinner than those in the blank group. The repaired skin proportions at 1, 2, 3, 4, 6 and 8 weeks after the transplantation were 15.72%±3.64%, 43.81%±4.87%, 65.35%±5.63%, 87.95%±4.78%,96.90%±6.89% and 100%, respectively in the SIS group, and 13.42%±5.63%,58.74%±4.48%,76.50%±5.23%,92.30%±5.75% and 100%, respectively in the blank group. Therewas a statistically significant difference between the two groups at 1, 2, 3 and 4 weeks after the transplantation(P<0.05). Under the microscope, the SIS-repaired skin was observed to have more keratinocytes and collagen tissues, whichwas familiar to the normal skin.Conclusion Porcine SIS can be used as a new kind of the tissue engineered materials to repair the full skin defect.
Small intestinal submucosa (SIS) is a natural decellularized extracellular matrix material. Due to its excellent biocompatibility, unique biomechanical properties and biological activity, it has been widely used as a scaffold in regenerative medicine. This article reviews the recent progress in the characterization and medical application of SIS respectively. The specific biological properties of the SIS, as well as its interaction with cells, are highlighted. Some of the SIS products and clinical cases are also reviewed and discussed.
Objective To investigate the effect of machine-enzyme digestion method on the residual quantity of small intestinal submucosa (SIS) cell and the content of growth factors. Methods Fresh jejunum of pig within 4 hours after harvesting was prepared into SIS after machine digestion (removing placenta percreta, mucosa, and muscular layer), degrease,trypsinization, abstergent processing, and freeze drying. Samples were kept after every preparation step serving as groups A, B, C, D, and E, respectively (n=4 per group). And the fresh jejunum served as control group (group F, n=4). The histological alteration in each preparation process was reviewed with HE staining and scanning electron microscope (SEM). Nest-polymerase chain reaction (PCR) was used to determine the content of death associated protein 12 (DAP12), and enzyme-linked immunosorbent assay (ELISA) was appl ied to detect the content of vascular endothel ial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor β (TGF-β), tumor necrosis factor α (TNF-α). Results HE staining and SEM observation showed that there were residual cells in groups A and B, and there were no residual cells in groups C, D, and E. Nest-PCR test revealed the occurrence of DAP12 in each group. The contents of DAP12 in groups A, B, C, D, E, and F were (18.01 ± 9.53), (11.87 ± 2.35), (0.59 ± 0.27), (0.29 ± 0.05), (0.19 ± 0.04), and (183.50 ± 120.13) copy × 106/cm2. The content of DAP12 in group F was significant higher than that of other groups (P lt; 0.05), groups A and B was higher than groups C, D, and E (P lt; 0.05), there were significantdifferences among groups C, D, and E (P lt; 0.05), and there was no significant difference between groups A and B (P gt; 0.05). The ELISA test showed the content of VEGF, bFGF, TGF-β, and TNF-α in group A was significantly higher than that of groups B, C, D, and E (P lt; 0.05), and there was no significant difference among groups B, C, D, and E (P gt; 0.05). Conclusion SIS prepared by simple mechanical method has more residual cells, while the machine-enzyme digestion method can effectively remove the cells and significantly reduce the DAP12 content. This approach can not obviously reduce the growth factor content in SIS.