To evaluate the possibil ity of collateral outflow tract of arterial sclerosis obstruction (ASO)and the prospect of cl inical appl ication. Methods The red emulsion was infused into the arteries of the above knee amputation of 10 fresh specimens. Then the pathological changes of the anterior tibial artery, posterior tibial artery and the popl iteal artery, and the contribution of these bole artery branch were observed. From September 2005 to April 2007, 5 patients with ASO were treated, unilateral lower l imb was involved in all cases. There were 3 males and 2 females, aged 68-81 years. The arteriography and Color Doppler ultrasound of lower l imbs showed that the femoral artery and the popl itealartery and the branches had no development. The exploratory operation on the popl iteal artery and the branches was carried out. Results The walls of the anterior tibial artery, posterior tibial artery, and the popl iteal artery were stiff and the lumens were filled with atheromatous plaque. The sural arteries opening to the bole artery was frequent. The collateral circulation at the knee perimeter was raritas rather affluent at the muscle group. All of the operations were successful, the skin temperature increased gradually after operation, and the degrees of blood oxygen saturation increased to 90%-100% at 6 hours from 0 before operation . After a follow-up of 3 to 12 months, the symptom improved obviously, rest pain disappeared, lower l imb ulcer healed. The Color Doppler ultrasound showed that most of the blood flow at the anastomotic stoma ejected into bypass circuit, and the blood flow at the distally posterior tibial artery and anterior tibial artery was l ittle. Conclusion The collateral outflow tract construction is feasible, it is an effective path after cl inical verification to solve the advanced stage ASO
OBJECTIVE: To explore the kidney anatomic structure of banna minipig inbred-lines, and to provide data for kidney xenotransplantation. METHODS: The fresh and infused kidneys of banna minipig (including the vessel and the ureter) were checked by anatomic microscope and vernier caliper in original location and away body. The tissue structure was observed by HE stain. RESULTS: The structure of kidney of banna minipig inbred-lines (including the vessel and the ureter) are similar to that of human being. The fascia propria of kidney is divided into three layers including capsula fibrosa, capsula adipose and fascia renalis. The thickness of cortex renalis is (20.0 +/- 2.4) mm. The average diameter of renal artery is 5.1 mm and is similar to that of human being. All the kidneys of banna minipig inbred-lines have a single branch renal artery. The diameters of left and right ureters are 5.1 mm and 4.7 mm, respectively. CONCLUSION: The kidney of banna minipig inbred-lines is an ideal replacement of human kidney for xenotransplantation.
Objective To provide the anatomic basis for thelag screw placement in the anterior column of the acetabulum. Methods Twenty-two pelvis specimens with 44 acetabula of the native adult cadavers were studied. The anthropometric measurement was performed on 44 acetabula to determine the shape of the transverse section of the anterior column of the acetabulum, the optimal entry point for the lag screw on the outer table of the ilium, the direction of the screw, and the distance from the entry point to the obturator groove. Results The transverse section of the anterior column of the acetabulum was almost triangle-shaped. The path for the lag screw placement was 10.5±0.8 mm in diameter. The optimal entry point on the posterolateral ilium for the screw fixation was found toexist 9.2±2.4 mm superior to the line between the anterior superior iliac spine and the greater sciatic notch and 38.5±3.8 mm superior to the greater sciatic notch. The distance from the entry point to the obturator groove was 84.1±6.2 mm. The inclination of the lag screw was 54.2±5.5° at the caudal direction in the sagittal plane and 40.7±3.8° in the horizontal plane. The device for the safe screw placement in the anterior column was designed. Conclusion The above datacan facilitate an insertion of one 6.5 mm lag screw into the anterior acetabular column and minimize the risk of articular violation or cortical penetration, which has a narrow margin of safety. The safe length of the lag screw should be 70 mm.The optimal entry point on the posterolateral ilium for the screw fixationis determined to be 10 mm superior to the line between the anterior superior iliac spine and the greater sciatic notch and 40 mm superior to the greater sciatic notch. The inclination of the lag screw should be 55° at the caudal direction in the sagittal plane and 40° in the horizontal plane. It is safe to place thelag screw in the anterior column with the help of the targeting device.
OBJECTIVE: To provide anatomy basis for a free latissimus dorsal muscular flap with the sensate nerve. METHODS: The structure of back and lateral chest area were dissected and the origin, alignment and distribution of the intercostals nerve within the area of latissimus dorsal muscular flap were observed in 40 adult cadaver specimens. RESULTS: The 5th to 10th lateral posterior branches of the thoracic nerve pierced from respective intercostal area near the axial anterior line and run a long distance in deep fascia. They distributed mainly in lateral latissimus skin outside the scapular line and anastomosed with the lower branch near the scapular line. Among these branchs, the 6th to 8th branches had a longer nerve distribution respectively and the pedicle of nerve and artery was parallel and long. CONCLUSION: It is possible to design a sensate latissimus dorsal muscular flap with the 6th to 8th lateral posterior branch of the intercostal nerve.
Objective To investigate the blood supply of the ulnar nerve in the elbow region and to design the procedure of anterior transposition of ulnar nerve accompanied with arteries for cubital tunnel syndrome.Methods The vascularity of the ulnar nerve was observed and measured in20adult cadaver upper limb specimens. And the clinical surgical procedure was imitated in 3 adult cadaver upper limb specimens. Results There were three major arteries to supply the ulnar nerve at the elbow region: the superior ulnar collateral artery, the inferior ulnar collateral artery and the posterior ulnar recurrent artery. The distances from arterial origin to the medial epicondyle were 14.2±0.9, 4.2±0.6 and 4.8±1.1 cm respectively. And the total length of the vessels travelling alone with the ulnar nerve were 15.0±1.3,5.1±0.3 and 5.6±0.9 cm. The external diameter of the arteries at the beginning spot were 1.5±0.5, 1.2±0.3 and 1.4±0.5 mm respectively. The perpendicular distance of the three arteries were 1.2±0.5,2.7±0.9 and 1.3±0.5 cm respectively.Conclusion It is feasible to perform anterior transposition of the ulnar nerve accompanied with arteries for cubital tunnel syndrome. And the procedure preserves the blood supply of the ulnar nerve following transposition.
Objective To investigate the anatomic foundation of using main branch of posterior femoral nerve to restore the sensation function of distal basedsural island flap. Methods Thirty cases of adult human cadaver legs fixed by 4%formaldehyde were used. Anatomical investigation of the posterior femoral nerves of lower legs was conducted under surgical microscope to observe their distribution, branches and their relationship with small saphenous vein. Nerve brancheswith diameter more than 0.1 mm were dissected and accounted during observation.The length and diameter of the nerves were measured. Results The main branch of posterior femoral nerve ran downwards from popliteal fossa within superficial fascia along with small saphenous vein. 70% of the main branch of the posterior femoral nerves lay medially to small saphenous vein, and 30% laterally. They wereclassified into 3 types according to their distribution in lower legs: typeⅠ (33.3%) innervated the upper 1/4 region of lower leg (region Ⅰ), type Ⅱ (43.3%) had branches in upper 1/2 region (region Ⅰ and Ⅱ), and type Ⅲ (23.3%) distributed over the upper 3/4 region (region Ⅰ, Ⅱ and Ⅲ). In type Ⅱ, the diameter of the main branches of posterior femoral nerves in the middle of popliteal tossa was 10±04 mm and innervated the posterior upper-middle region (which was the ordirary donor region of distal based sural island flaps) of lower legs with 2.0±0.8 branches, whose diameter was 0.3±0.2 mm and length was 3.5±2.7 mm. The distance between the end of these branches and small saphenous vein was 0.8±0.6 mm. In type Ⅲ, their diameter was 1.2±0.3 mm and innervated the posterior upper-middle region of lower legs with 3.7±1.7 branches, whose diameter was 0.4±0.1 mm and length was 3.7±2.6 mm. The distancebetween the end of these branches and small saphenous vein was 0.8±0.4 mm. Conclusion 66.6% of human main branch of posteriorfemoral nerves (type Ⅱ and type Ⅲ) can be used to restore the sensation of distal based sural island flap through anastomosis with sensor nerve stump of footduring operation.
Objective To explore the arterial origin and the distribution of the extracranial branches of the facial nerve. Methods Red latex or red chlorinated polyvinyl chloride was injected into the arteries of 15 fresh adult head specimens by both common carotid artery catheterization. The arterial origin and distribution of the extracranial branches of the facial nerve were observed. Results The nutrient arteries of the extracranial branches of the facial nerve originated from stylomastoid artery of the posterior auricular artery, the facial nervous branch of superficial temporal artery, transverse facial artery, superior and inferior facial nervous branches of external carotid artery and the posteriorand anterior facial nervous branches of external carotid artery. The outer diameters of them were (0.8±0.2) mm, (0.9±0.4) mm, (1.9±0.3) mm, (1.0±0.2) mm, (1.1±0.4) mm, (1.0±0.2) mm and (1.1±0.6) mm respectively. The sub-branches ofthe attendant artery of the facial nerve anastomosed each other in addition to supplying their own nerve, and a rich vascular network was formed between the facial nerve and adjacent tissue. Conclusion The study on blood supply of the extracranial segment of the facial nerve can provide anatomic basis for avoiding injury of the nutrient arteries of the facial nerve during operation of the parotidean and masseteric region clinically.
Objective To provide the anatomic evidences and the choice of tendon graft for anatomic reconstruction of posterolateral complex through the morphological and biomechanical study on posterolateral structures of the knee in normal adult cadavers. Methods Twenty-three fresh lower l imb specimens from voluntary donators and 9 lower l imbs soaked by Formal in were selected for anatomic study on the posterolateral complex of the knee. Six fresh specimens were appl ied to measure the maximum load, intensity of popl iteus tendon, lateral collateral l igament, and popl iteofibular l igament, which were key components of the posterolateral complex. Results Popl iteus musculotendinous junction was located at 7.02-11.52 mm beneath lateral tibial plateau and 8.22-13.94 mm medially to fibular styloid process. The distances from femoral insertion of popl iteus tendon to the lower border of femoral condyle and to posterior edge of femoral condyle were 10.52-14.38 mm and 14.24-26.18 mm, respectively. Popl iteofibular l igament originated from popl iteus musculotendinous junction and ended at fibular styloid process. Lateral collateral l igament was located at 10.54-16.48 mm inferior to fibular styloid process, and the distances from femoral insertion to the lower border of femoral condyle and to posterior edge of femoral condyle were 14.92-19.62 mm and 14.66-27.08 mm, respectively. The maximum load and intensity were 579.60-888.40 N and 20.50-43.70 MPa for popl iteus tendon, were 673.80-1 003.20 N and 24.30-56.40 MPa for lateral collateral l igament, and were 101.56-567.35 N and 8.94-36.16 MPa for popl iteofibular l igament, respectively. Conclusion During anatomical reconstruction of posterolateral complex, the bony tunnel of the key components should be located according to the insertion mentioned above. On the basis of this study, the maximum load and intensity of selectable grafts should exceed 833 N and 36 MPa.
Objective To provide the anatomical basis for posterior femoral neurocutaneous vascular flap pedicled with direct popliteal artery perforator. Methods A total of 30 embalmed lower limbs of adult cadavers perfused with red latex were dissected and measured to observe the course and distribution of posterior femoral cutaneous nerve (PFCN), and the anastomoses between direct popliteal artery perforator and nutrient vessels of PFCN. Mimic operation was performed on 1 side of fresh specimen. Results PFCN started from the midpoint of the inferior gluteus maximus edge, and went down along the middle line of posterior thigh region, and the final trunk of PFCN accompanied with small saphenous vein down to the middle line of lower leg. The diameters of PFCN was (3.0 ± 0.6) mm at the inferior gluteus maximus edge, and was (2.0 ± 0.7) mm at the superior fossa poplitea. The nutrient vessels of PFCN were multi-segmental and polyphyletic. The direct popliteal artery perforator which started from popliteal artery directly was constant pierced into deep fascia about 7-11 cm above the knee joint, and its original diameter was (0.8 ± 0.2) mm. The direct popliteal artery perforator had 1-2 accompanying veins, and this perforator artery was the main nutrient vessel of the inferior segment of PFCN. The direct popliteal artery perforator gave off 5-8 small vessels which anastomosed with the 1st-3rd perforator of deep femoral artery, the obturator artery perforator, and the lateral femoral circumflex artery perforators. Then these nutrient vessels formed vascular plexus along PFCN in the middle line of posterior region of thigh. Mimic operation showed that the posterior femoral neurocutaneous vascular flap pedicled with direct poplitea artery perforator could be formed successfully. Conclusion The posterior femoral neurocutaneous vascular flap pedicled with direct popliteal artery perforator has constant blood supply and can be easily formed to repair defects around knee joint.
To investigate the anatomic feature of the posterior hip joint capsule and its distributional difference of collagen fibers and to probe the optimization of the capsulotomy which can reserve the best strength part. Methods Ten adult cadaver pelvises (6 males and 4 females, aged 28-64 years) fixed with formal in were used. Ten right hips were used for anatomical experiment of hip joint capsule. The posterior hip joint capsules were divided into 3 sectors(I-III sectors ) and 9 parts (IA-C, IID-F, IIIG-I). The average thickness of each part was measured and the ischiofemorale l igaments were observed. Five capsules selected from ten left hips were used for histological experiment. The content of collagen fibers in sector I and sector II was analyzed by Masson’s staining. Two fresh frozen specimens which were voluntary contributions were contrasted with the fixed specimens. The optimal incision l ine of the posterior capsule was designed and used. Results The thickness in the posterior hip joint capsule [IA (2.30 ± 0.40), IB (4.68 ± 0.81), IC (2.83 ± 0.69), IID (2.80 ± 0.79), IIE (4.22 ± 1.33), IIF (2.50 ± 0.54), IIIG (1.57 ± 0.40), IIIH (2.60 ± 0.63), IIII (1.31 ± 0.28) mm] had no uniformity (P lt; 0.01). The IIIG part and the IIII part were thinner than the IB part and the IIE part (P lt; 0.01). Two weaker parts located at obturator externus sector (sector III), the ischiofemorale l igament trunk went through two thicker parts (IB and IIE). The distribution of the collagen fibers in sector I and sector II(IA 20.34% ± 5.14%, IB 48.79% ± 12.67%, IC 19.87% ± 5.21%, IID 17.57% ± 3.56%, IIE 46.76% ± 11.47%, IIF 28.65% ± 15.79%) had no uniformity (P lt; 0.01). The content of collagen fibers in IB part and IIE part were more than that of other parts (P lt; 0.01). There were no statistically significant difference in the distribution feature of the thickness and the ischiofemorale l igaments between the fresh frozen specimens and the fixed specimens. The optimal incision l ine C-A-B-D-E of the posterior capsule was designed and put into cl inical appl ication. The remaining capsular flap comprise the most of the ischiofemorale l igament trunk and the part of gluteus minimus. Conclusion Although enhanced posterior soft tissue repairin total hip arthroplasty was investigated deeply and obtained great development, but the postoperative dislocation rate was not el iminated. It is significant for optimizing the capsulotomy to reserve the best strength part of the posterior capsule and to bring into full play the function of the ischiofemorale l igaments.