Objective To investigate a new grafting material of bone xenograft with b bone inductive and conductive capacity. Methods Based on successful clinical application of the reconstituted bone xenograft (RBX), a new xenograft was made by combining recombinant human bone morphogenetic protein-2 (rhBMP-2) with antigen-free bovine cancellous bone (BCB). Sixty male BALB/C mice aged 4 weeks were divided into study group of 30 and control group of 30 randomly. rhBMP-2 / BCB was implanted in the left thigh muscle pouch in the study group andBCB in the control group. The mice were sacrificed at 7 d, 14d and 21d after implantation. Inductivity of rhBMP-2/BCB was detected by histological observation and biochemical determination of the samples. Results Histological examinationshowed that rhBMP-2/BCB induced chondrogenesis on the 7th day, with woven boneformed on the 14th day, and lamellar bone and marrow on the 21st day, while BCBfailed to induce chondrogenesis or osteogenesis on the 7th, 14th and 21st days. The alkaline phosphatase activities and calcium content in study group were higher than those in control group with significant difference (P<0.01). Conclusion rhBMP-2/BCB is an ideal grafting material with b bone inductive and conductive capacity without evoking immune reaction.
Objective To investigate the effect of anti-infective reconstitutedbone xenograft (ARBX) as primary grafting on repair of a segmental contaminateddefect in canine radius. Methods The contaminated segmentaldefects of 1.5 cm were made in both radius of 8 canine and 1 ml of staphylococal suspension was injected into the defect region at a concentration of 5×106 CFU/ml. ARBX(experimental side) or RBX(control side) was implanted into the two sides of the defects respectively as primary grafting followed by internal fixation. The results were compared between the two grafting materials in repairing the contaminated segmental defect. Results In ARBX side, the defects were repaired completely in 5 cases and partially in 1 case, and there existed no osteomyelitis in all cases; while in RBX side, the defects were repaired partially in 1 case and were not repaired in 5 cases after 6 months of operation, and there existed osteomyelitis in all cases. Conclusion Besides its b osteoinductive and osteoconductive activity, ARBX is highly antibacterial and can be used as primary grafting in repairing contaminated segmental defects.
It is reported in this paper that defect of chest wall of dogs were repaired by hetcrotransplantation of pig bone. The shape of original chest wail were achieved following operation. Histologic study showed that the grown between trabeculae with immersion that method is not only to have same function of other reparing materials,but there is no rejection.
Objective To observe the changes of immune status in recipient after implanting with xenogeneic acellular bone matrix (ACBM). Methods Twenty rabbits were randomly divided into 4 groups. Autograft,ACMB and bone soaked in alcohol were implant into the 3 experimental groups separately, and No-treatment was done as control group. The CD4+,CD8+,CD25+T lymphocytes in blood were detected by flow cytometer at 1, 2, 4 and 6 weeks after operation. After 2 and 6 weeks of implantation, the changes of bone and tissue were observed by histology. Results After 2-6 weeks, CD4+ and CD8+ T cells were significantly higher in the implantedgroup of bone soaked in alcohol than that in the other 3 groups(Plt;0.05) and there wasno statistically significant difference in the other 3 groups(Pgt;0.05). After 2 weeks, CD25+ T cells were significantly higher in the implanted group of bone soakedin alcohol than that in the other groups. In the 2nd week, there were inflammatory infiltration with a predominance of granulocytes. In the 6th week, there were many fibroblasts instead of granulocytes with a few lymphocytes and cartilage island formed in the implanted groups of autograft and ACMB. Conclusion ACBM implanting has low influence on cellular immunity in recipient.
Objective To evaluate the feasibility of poly-L-lactide(PLLA)/porcinederived xenogeneic bone(PDXB) composite as a scaffold for the bone tissue engineering. Methods The film and the scaffold of the PLLA-PDXB composite were respectively prepared by a solution casting method and a solution casting-particle leaching method. The composite film and scaffold were further treated by the surface alkaline hydrolysis. The surface morphology of the composite was observed by the scanning electron microscopy, and hydrophilicity degree of the composite was measured. The OCT-1 osteoblastlike cells were cultured and amplified in vitro as the seeding cells, which werethen implanted on the film and scaffold. The adherence rate, adherence shape,proliferating activity, and growing morphology of the OCT-1 osteoblastlikecells were observed on the film. Results The PDXB particle 50 μm in diameter on average had a similar phase structure to that of hydroxyapatite. But its Ca/P ratio was lower than that of hydroxyapatite. After the surface alkaline hydrolysis, the PDXB particle could be exposed on the surface of the PLLA-PDXB composite. The surface roughness and hydrophilicity of the PLLAPDXB composite were obviously enhanced. The cell adherence rate and the cell proliferation activity of the PLLAPDXB composite were higher than those of the pure PLLA material. The cells tended to grow on the exposed surface of the PDXB particles. The cells seeded on the composite scaffold could migrate to the inside of the composite scaffold and grew well. Conclusion The PLLA-PDXB composite has a good cell affinity, and this kind of composite can hopefullybecome a new scaffold material to be used in the bone tissue engineering.
Objective To study the influence of the immersed time by hydrogen dioxide on the characteristics of bovine cancellous bone granules in various periods. Methods Ten 24-month-old Qinchuan bovine, male or female, weighing 150-170 g, were selected. Cancellous bone granules from metaphysic of bovine long bone were cut into cubes of 5 mm × 5 mm ×5 mm and immersed by 8.8 mol/L hydrogen dioxide for 0, 12, 24, 36, 48, 60 and 72 hours separately. Determination of ash, scanning electron microscope, X-ray energy spectrum and micro CT were used to investigate the changes of composition, structure and qual ity of bone. Results With the immersed time increasing, the contents of organics in the bone cancellous were reduced gradually, and obviously decreased during the periods of 0 to 24 hours and 60 to 72 hours (P lt; 0.05). The contents of calcium and phosphorus decreased gradually, they could not be detected almost after 60 days (P lt; 0.05). Bone mineral density and bone mineral content were decreased obviously after 60 hours (P lt; 0.05). The bone trabecula became sl immer and trabecular spacing became larger. Conclusion Hydrogen dioxide can be used to remove the antigen in xenogeneic bone; however as the time increasing (more than 60 hours) the composition and structure will be damaged. Thus it is important to control the immersed time for maintaining the biological characteristics of xenogeneic bone substitute as well as el iminating antigen by hydrogen dioxide.
Objective To evaluate the biocompatibil ity of manufactured heterogeneous demineral ized bone matrix(DBM) particles and to provide basis for further experimental study and cl inical application. Methods Heterogeneous DBMparticles A (degreased and demineralized) and B (degreased, demineralized and acellular), particle size from 250 to 810 μm, and leaching l iquor were made with a series of physical and chemical methods from pig l imbs cortical bone. The residual calcium and phosphorus contents of bone particles were measured after degreased and demineral ized. The acute toxicity test, skin stimulating test, pyrogeneous test, hemolysis test, cellular toxicity test and muscular embedded test were carried out according standard toxicological method. Results The contents of calcium and phosphorus in cortical bone were (189.09 ± 3.12) mg/g and (124.73 ± 2.87) mg/g, and in demineral ized bone matrix particles were (3.48 ± 0.09) mg/g and (3.46 ± 0.07) mg/ g. The residual calcium content was 1.87%, of phosphorus was 2.69%. The activity of mice was normal in the acute toxicity test. No animal died and no toxicity symptom or adverse effects were shown within 7 days. The mean weight daily increased showed no statistically significant difference (P gt; 0.05) between two groups after 7 days. Skin stimulating reactions were not found in the two experimental groups and negative control group by intradermal stimulation test. The maximal increase of body temperature in two experimental groups were 0.4℃ , which meet the national standard (lt; 0.6 ). The rate of haemolysis to the leaching liquor was 1.14% (A) and 0.93% (B), which was lower than the national standard (lt; 5%). The cell prol iferation rates of two experimental groups when compared with control group showed no statistically significant difference (P gt; 0.05). The toxicity of DBM particlesleaching liquor was graded from 0 to 1, which means the material has no cytotoxicity. All the animals survived well. There was no tissue necrosis, effusion or inflammation at all implantation sites. For the index of HE and Masson staining, there were no effusion around the material and inflammatory cell infiltrate obviously in two experimental groups. Inflammatory cell infiltrate is sl ight in control group 2 weeks postoperatively. The inflammatory cell infiltration was mitigate gradually over time in two experimental groups after 4, 8 and 12 weeks. New bone and collagen fibers formation were observed when the material was degraded and absorpted. Score evaluation of local cellular immune response at different time after operation of two experimental groups showed no statistically significant difference (P gt; 0.05). Conclusion Heterogeneous DBM has no obvious toxicity, skin irritation, pyrogenicity, and no cytotoxicity with a rate of haemolysis lt; 5%, so it has good biocompatibility and partial osteoinductive.
From January 1984 to November 1997, the boiling xenogenic bone (porcine and bovine bone) was applied in 65 patients. The xenogenic bone was used to promote bone healing in 24 cases, intramedullary bone graft in 37 and osteomyelitis in 4. All of the patients were followed up for 2 to 35 months. The results showed that in five cases there was infection after operation, and all other the wounds had primary healing. The xenogenic bone seemed to induce rejection in vivo. In the sevious cases immunosuppressive treatment was often needed. The volume of the bone grafted and the extent of the periosteum being stripped seemed to be important whether xenogenic bone graft would be successful or. There were lots of problem needed investigation.
【Abstract】 Objective To produce a new bone tissue engineered carrier through combination of xenograft bone (X)and sodium alginate (A) and to investigate the biological character of the cells in the carrier and the abil ity of bone-forming in vivo, so as to provide experimental evidence for a more effective carrier. Methods BMSCs were extracted from 2-week-old New Zealand rabbits and the BMSCs were induced by rhBMP-2 (1 × 10-8mol/L). The second generation of the induced BMSCs was combined with 1% (V/W) A by final concentration of 1 × 105/mL. After 4-day culture, cells in gel were investigated by HE staining. The second generation of the induced BMSCs was divided into the DMEM gel group and the DMEM containing 1% A group. They were seeded into 48 well-cultivated cell clusters by final concentration of 1 × 105/mL. Seven days later, the BMP-2 expressions of BMSCs in A and in commonly-cultivated cells were compared. The second generation of the induced BMSCs was mixed with 2% A DMEM at a final concentration of 1 × 1010/mL. Then it was compounded with the no antigen X under negativepressure. After 4 days, cells growth was observed under SEM. Twenty-four nude mice were randomly divided into 2 group s (n=12).The compound of BMSCs-A-X (experimental group) and BMSCs-X (control group) with BMSCs whose final concentrat ion was 1 × 1010/mL was implanted in muscles of nude mice. Bone formation of the compound was histologically evaluated by Image Analysis System 2 and 4 weeks after the operation, respectively. Results Cells suspended in A and grew plump. Cell division and nuclear fission were found. Under the microscope, normal prol iferation, many forming processes, larger nucleus, clear nucleolus and more nuclear fission could be seen. BMP-2 expression in the DMEM gel group was 44.10% ± 3.02% and in the DMEM containing 1% A group was 42.40% ± 4.83%. There was no statistically significant difference between the two groups (P gt; 0.05). A was compounded evenly in the micropore of X and cells suspended in A 3-dimensionally with matrix secretion. At 2 weeks after the implantation, according to Image Analysis System, the compound of BMSCs-A-X was 5.26% ± 0.24% of the totalarea and the cartilage-l ike tissue was 7.31% ± 0.32% in the experimental group; the compound of BMSCs-X was 2.16% ± 0.22% of the total area and the cartilage-l ike tissue was 2.31% ± 0.21% in the control group. There was statistically significant difference between the two groups (P lt; 0.05). At 4 weeks after the operation, the compound of BMSCs-A-X was 7.26% ± 0.26% of the total area and the cartilage-l ike tissue was 9.31% ± 0.31% in the experimental group; the compound of BMSCs-X was 2.26% ± 0.28% of the total area and the cartilage-l ike tissue was 3.31% ± 0.26% in the control group. There was statistically significant difference between the two groups (P lt; 0.05). Conclusion The new carrier compounding A and no antigen X conforms to the superstructural principle of tissue engineering, with maximum cells load. BMSCs behave well in the compound carrier with efficient bone formation in vivo.
Ceramiclike xenogeneic bone (CXB) was obtained from the fresh bone of pig ribs being treated by physical and chemical methods to deprive of its organic substance. The CXB possessed the same natural porous network system as that of the human. The CXB was cultured with the bone marrow stromal cells of rabit. When the marrow cells had integrated with the CXB, thus a new material was obtained. (CXB-BM), and was implanted sacro-spinal muscle of rabbit. The specimens were observed under phase microscope, light microscope and electronic scanning microscope. The results showed that: at the 2nd week after the implantation of CBX-BM composite material there began the new bone formation, and the rate of bone formation was increased with time. There was evident new bone formation after 24 weeks. The process of the new bone formation were quite similar to the composite graft of HAP red autogenous and marrow, but the former degraded faster and formed typical cancellous structure earlier. There was no new bone formation when CXB was implanted alone in the control. Both the mechanism of osteogenetic potential and its clinical application were discussed.