ObjectiveTo analyze the progress in biological tissue engineering scaffold materials and the clinical application, as well as product development status. MethodsBased on extensive investigation in the status of research and application of biological tissue engineering scaffold materials, a comprehensive analysis was made. Meanwhile, a detailed analysis of research and product development was presented. ResultsConsiderable progress has been achieved in research, products transformation, clinical application, and supervision of biological scaffold for tissue engineering. New directions, new technology, and new products are constantly emerging. With the continuous progress of science and technology and continuous improvement of life sciences theory, the new direction and new focus still need to be continuously adjusted in order to meet the clinical needs. ConclusionFrom the aspect of industrial transformation feasibility, acellular scaffolds and extracellular matrix are the most promising new growth of both research and product development in this field.
To summarize the medium-term cl inical result of bio-derived bone transplantation in orthopedics with tissue engineering technique. Methods From December 2000 to June 2001, 10 cases of various types of bone defect were treated with tissue engineered bone, which was constructed in vitro by allogenous osteoblasts from periosteum (1 × 106/ mL) with bio-derived bone scaffold following 3 to 7 days co-culture. Six men and 4 women were involved in this study, aged from 14 to 70 years with a median of 42 years. Among them, there were 2 cases of bone cyst, 1 case of non-union of old fracture, 6 cases of fresh comminuted fracture with bone defect, and 1 case of chronic suppurative ostemyel itis. The total weight of tissue engineered bone was 3-15 g in all the cases, averaged 7.3 g in each case. Results The wound in all the case healed by first intention. For 7 year follow up, bone union was completed within 3.0 to 4.5 months in 9 cases, but loosening occurred and the graft was taken out 1 year after operation in 1 case. The X-ray films showed that 9 cases achieved union except one who received resection of the head of humerus. No obvious abnormities were observed, and the function of affected l imbs met daily l ife and work. Conclusion Bio-derived tissue engineered bone has good osteogenesis. No obvious rejection and other compl ications are observed in the cl inical appl ication.
ObjectiveTo review the properties of bio-derived hydrogels and their application and research progress in tissue engineering. MethodsThe literature concerning the biol-derived hydrogels was extensively reviewed and analyzed. ResultsBio-derived hydrogels can be divided into single-component hydrogels (collagen,hyaluronic acid,chitosan,alginate,silk fibroin,etc.) and multi-component hydrogels[Matrigel,the extract of extracellular matrix (ECM),and decellularized ECM].They have favorable biocompatibility and bioactivity because they are mostly extracted from the ECM of biological tissue.Among them,hydrogels derived from decellularized ECM,whose composition and structure are more in line with the requirements of bionics,have incomparable advantages and prospects.This kind of scaffold is the closest to the natural environment of the cell growth. ConclusionBio-derived hydrogels have been widely used in tissue engineering research.Although there still exist many problems,such as the poor mechanical properties,rapid degradation,the immunogenicity or safety,vascularization,sterilization methods,and so on,with the deep-going study of optimization mechanism,desirable bio-derived hydrogels could be obtained,and thus be applied to clinical application.
ObjectiveTo study the effect and feasibility of poly-lactide-co-glycolide (PLGA) loaded with recombinant human bone morphogenetic protein 2 (rhBMP-2) on repairing articular cartilage defect in rabbits. Methods PLGA was made into cylinders which were 4 mm in diameter and 3 mm in thickness. rhBMP-2 was fully homogenated before used. PLGA combined with 0.5 mg rhBMP-2 under the condition of vacuum(700 mmHg),and then lyophilized, packed ,sterilized with ethylene oxide and reserved. Defects of 4 mm in diameter and reaching medullary cavity were made in femoral condyles of 72 two-month-old New Zealand white rabbits. The 36 right defects were repaired with PLGA-rhBMP-2 composites as the experimental group, the 36 left defects with PLGA only as PLGA group, the other 36 left defects were left untreated as control group, and the other 36 right defects with PLGA-MSCs composites as cell group. At 4, 8, 12, 24, 36 and 48 weeks after operation, macroscopical and microscopical observations were made, and the histological grade wasdone.Results After 4 weeks of operation: In the experimental group and cell group, defects were filled with white translucent tissue which appeared smooth and soft; the matrix around chondrocytes was weakly metachromatic, the newly formed cartilage tissue was thicker than normal cartilage tissue; there was no formed tissue in the PLGA group and the blank control group. After 8 weeks of operation: In the experimental group and cell group, the new tissue was white, translucent, tenacious and smooth. The boundary with normal cartilage became vague. New cartilage cells distributed evenly. The cells of the surface layerparalleled, but the deeper layer lost directivity. The matrix dyed weakly. The new cartilage gradually became thinner, but it still thicker than the normal cartilage ones. The PLGA degraded besides some drops.In the blank control group and PLGA group, a little white membrane formed at the bottom of the defect. After 1224 weeks of operation: In the experimental group and cell group, defects were filled with new tissues which were white, translucent, tenacious and smooth. The boundary disappeared.The thickness of the new cartilage was similar to that of the normal ones. The cells of the surface layer paralleled to each other,but the cells of the deeper layer tended to arrange vertically. The matrix around chondrocytes was metachromatic,but the color was lighter than that of the normal cartilage. Bone under the cartilage and the tide mark recovered. The new cartilage linked with nomal cartilage finely.In the blank control group and PLGA group, there was a little fibrous tissue at the bottom of the defect withe obvious boundary. After 36 weeks and 48 weeks of operation:in the experimental group and the cell group, the new cartilage was slightly white,continuous and less smooth. The boundary disappeared. There was no proliferated synovial membrane.The thickenss of the new cartilage was thinner than that of the normal ones. The matrix around chondrocytes was weakly metachromatic. In the blank control group and PLGA group, the defect still existed, but became smaller.At the bottom of the defect, fibrous tissues formed. Some cartilage denudated and became less smooth.Some bone under cartilage exposed,and the synovial membrane became thick. The histologic grade of the repair tissue at 12 weeks and 24 weeks of operation in experimental group and cell group was significantly different from that at 4, 8 and 48 weeks of operation(Plt;0.01). There was also significant difference in the experimental group and cell group compared with the blank control group and PLGA group at each time after operation(Plt;0.01). But there was no significant difference between the experimental group and the cell group. Conclusion In the course of degradation。。。。。。.
OBJECTIVE: To study the feasibility of calcium polyphosphate fiber (CPPF) as the scaffold material of tendon tissue engineering. METHODS: CPPF (15 microns in diameter) were woven to form pigtail of 3 mm x 2 mm transverse area; and the tensile strength, porous ratio and permeability ratio were evaluated in vitro. Tendon cells (5 x 10(4)/ml) derived from phalangeal flexor tendon of SD rats were co-culture with CPPF scaffold or CPPF scaffold resurfaced with collagen type-I within 1 week. The co-cultured specimens were examined under optical and electric scanning microscope. RESULTS: The tensile strength of CPPF scaffolds was (122.80 +/- 17.34) N; permeability ratio was 61.56% +/- 14.57%; and porous ratio was 50.29% +/- 8.16%. CPPF had no obvious adhesive interaction with tendon cells, while CPPF of surface modified with collagen type-I showed good adhesive interaction with tendon cells. CONCLUSION: The above results show that CPPF has some good physical characteristics as scaffold of tendon tissue engineering, but its surface should be modified with organic substance or even bioactive factors.
【Abstract】 Objective To compare the effect of PLGA and collagen sponge combined with rhBMP-2 on repairing ofarticular cartilage defect in rabbits respectively. Methods PLGA and collagen sponge were made into cyl inders which were 4 mm in diameter and 3 mm in thickness, and compounded with rhBMP-2 (0.5 mg). Defect 4 mm in diameter were made in both of femoral condyles of 24 two-month-old New Zealand white rabbits. The defects in right 18 knees were treated with PLGA/rhBMP-2 composites (experimental group 1), and the left 18 knees were treated with collagen sponge/rhBMP-2 composites (experimental group 2), the other 12 knees were left untreated as control group. At 4, 12 and 24 weeks after operation, the animals were sacrificed and the newly formed tissues were observed macroscopically and microscopically, graded histologically and analyzed statistically. Results From the results of macroscopical and microscopical observation, in the experimental group 1, the defects were filled with smooth and translucent cartilage; while in the experimental group 2, the white translucent tissues did notfill the defects completely; and in the two experimental groups, the new cartilage tissues demarcated from the surrounding cartilage,chondrocytes distributed uniformly but without direction; a l ittle fibrous tissue formed in the control group 4 weeks postoperatively. In the experimental group 1, the defects were filled completely with white, smooth and translucent cartilage tissue without clear l imit with normal cartilage; while in the experimental group 2, white translucent tissues formed, the boundary still could be recognized; in the two experimental groups, the thickness was similar to that of the normal cartilage; the cells paralleled to articular surface in the surface layer, but in the deep layer, the cells distributed confusedly, the staining of matrix was positive but a l ittle weak; subchondral bone and tide mark recovered and the new tissue finely incorporated with normal cartilage;however, in the control group, there was a l ittle of discontinuous fibrous tissue, chondrocytes maldistributed in the border andthe bottom of the defects 12 weeks postoperatively. In the experimental group 1, white translucent cartilage tissues formed, the boundary disappeared; in the experimental group 2, the color and the qual ity of new cartilage were similar to those of 12 weeks; in the two experimental groups, the thickness of the new cartilage, which appeared smooth, was similar to that of the normal cartilage, the chondrocytes arranged uniformly but confusedly; the staining of matrix was positive and subchondral bone and tide mark recovered, the new tissue finely incorporated with normal cartilage; in the control group, a layer of discontinuous fibrous tissue formed in the bottom of the defects 24 weeks postoperatively. Results of histological grade showed that there were significantdifference between experimental group (1 and 2) and control group at any time point (P lt; 0.01); the scores of 12 weeks and 24 weeks in experimental group 1 and 2 had a significant difference compared with that of 4 weeks (P lt; 0.01), there was no significant difference between 12 weeks and 24 weeks (P gt; 0.05), and there were no significant difference between the two experimental groups at the same time point (P gt; 0.05). Conclusion Both PLGA and collagen sponge as a carrier compounded with rhBMP-2 can repair articular cartilage defects.
In sports system, the tendon-bone interface has the effect of tensile and bearing load, so the effect of healing plays a crucial role in restoring joint function. The process of repair is the formation of scar tissue, so it is difficult to achieve the ideal effect for morphology and biomechanical strength. The tissue engineering method can promote the tendon-bone interface healing from the seed cells, growth factors, and scaffolds, and is a new direction in the field of development of the tendon-bone interface healing.
Objective To study the feasibil ity of preparation of the poly-D, L-lactide acid (PDLLA) scaffolds treated by ammonia plasma and subsequent conjugation of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides via amide l inkage formation. Methods PDLLA scaffolds (8 mm diameter, 1 mm thickness) were prepared by solvent casting/particulate leaching procedure and then treated by ammonia plasma. The consequent scaffolds were labeled as aminated PDLLA (A/ PDLLA). The pore size, porosity, and surface water contact angle of groups 0 (un-treated control), 5, 10, and 20 minutes A/ PDLLA were measured. A/PDLLA scaffolds in groups above were immersed into the FITC labelled GRGDS aqueous solutionwhich contain 1-[3-(dimethylamino) propyl]-3-ethylcarbodiimide hydrochloride (EDC.HCl) and N-hydroxysuccinimide(NHS), the molar ratio of peptides/EDC.HCL /NHS was 1.5 ∶ 1.5 ∶ 1.0, then brachytely sloshed for 24 hours in roomtemperature. The consequent scaffolds were labelled as peptides conjugated A/PDLLA (PA/PDLLA). The scaffolds in groups 0, 5, 10, and 20 minutes A/PDLLA and groups correspondingly conjugation of peptides were detected using X-ray photoelectron spectroscopy (XPS). The scaffolds in groups of conjugation of peptides were measured by confocal laser scanning microscope and high performance l iquid chromatography (HPLC), un-treated and un-conjugated scaffolds employed as control. Bone marrow mesenchymal stem cells (BMSCs) from SD rats were isolated and cultured by whole bone marrow adherent culture method. BMSCs at the 3rd–6th passages were seeded to the scaffolds as follows: 20 minutes ammonia plasma treatment (group A/PDLLA), 20 minutes ammonia plasma treatment and conjugation of GRGDS (group PA/PDLLA), and untreated PDLLA control (group PDLLA). After 16 hours of culture, the adhesive cells on scaffolds and the adhesive rate were calculated. After 4 and 8 days of culture, the BMSCs/scaffold composites was observed by scanning electron micorscope (SEM). Results No significant difference in pore size and porosity of PDLLA were observed between before and after ammonia plasma treatments (P gt; 0.05). With increased time of ammonia plasma treatment, the water contact angle of A/PDLLA scaffolds surface was decreased, and the hydrophil icity in the treated scaffolds was improved gradually, showing significant differences when these groups were compared with each other (P lt; 0.001). XPS results indicated that element nitrogen appeared on the surface of PDLLA treated by ammonia plasma. With time passing, the peak N1s became more visible, and the ratio of N/C increased more obviously. AfterPDLLA scaffolds treated for 0, 5, 10, and 20 minutes with ammonia plasma and subsequent conjugation of peptides, the ratio of N/C increased and the peak of S2p appeared on the surface. The confocal laser scanning microscope observation showed that the fluorescence intensity of PA/PDLLA scaffolds increased obviously with treatment time. The amount of peptides conjugated for 10 minutes and 20 minutes PA/PDLLA was detected by HPLC successfully, showing significant differences between 10 minutes and 20 minutes groups (P lt; 0.001). However, the amount of peptides conjugated in un-treated control and 0, 5 minutes PA/PDLLA scaffolds was too small to detect. After 16 hours co-culture of BMSCs/scaffolds, the adhesive cells and the adhesive rates of A/PDLLA and PA/PDLLA scaffolds were higher than those of PDLLA scaffolds, showing significant difference between every 2 groups (P lt; 0.01). Also, SEM observation confirmed that BMSCs proliferation in A/PDLLA and PA/PDLLA groups was more detectable than that in PDLLA group, especially in PA/PDLLA group. Conclusion Ammonia plasma treatment will significantly increase the amount of FITC-GRGDS peptides conjugated to surface of PDLLA via amide l inkage formation. This new type of biomimetic bone has stablized bioactivities and has proved to promote the adhesion and proliferation of BMSCs in PDLLA.
Objective To review the current development in meniscus tissue engineering. Methods Recent literature concerning the development of the meniscus tissue engineering was extensively reviewed and summarized. Results Recent researches mainly focus on: selection of seed cells and research of their potential of differentiation into chondrocytes; selection of scaffold materials and research of their mechanical properties; cytokines and their mechanisms of action. Conclusion Many achievements have been made in meniscus tissue engineering. Most important topics in future research include: finding seed cells that are adapted to physiological process, are easy to culture, and have higher chondrogenic differentiation ability; looking for necessary cytokines and their mechanisms of action; finding scaffold meterials with b morphological plasticity, no antigenicity, good degradability, and mechanical property close to normal meniscus.
Objective To explore the method of preparing the electrospinning of synthesized triblock copolymers of ε-caprolactone and L-lactide (PCLA) for the biodegradable vascular tissue engineering scaffold and to investigateits biocompatibil ity in vitro. Methods The biodegradable vascular tissue engineering scaffold was made by the electrospinning process of PCLA. A series of biocompatibil ity tests were performed. Cytotoxicity test: the L929 cells were cultured in 96-wellflat-bottomed plates with extraction media of PCLA in the experimental group and with the complete DMEM in control group, and MTT method was used to detect absorbance (A) value (570 nm) every day after culture. Acute general toxicity test: the extraction media and sal ine were injected into the mice’s abdominal cavity of experimental and control groups, respectively, and the toxicity effects on the mice were observed within 72 hours. Hemolysis test: anticoagulated blood of rabbit was added into the extracting solution, sal ine, and distilled water in 3 groups, and MTT method was used to detect A value in 3 groups. Cell attachment test: the L929 cells were seeded on the PCLA material and scanning electron microscope (SEM) observation was performed 4 hours and 3 days after culture. Subcutaneous implantation test: the PCLA material was implanted subcutaneously in rats and the histology observation was performed at 1 and 8 weeks. Results Scaffolds had the characteristics of white color, uniform texture, good elasticity, and tenacity. The SEM showed that the PCLA ultrafine fibers had a smooth surface and proper porosity; the fiber diameter was 1-5 μm and the pore diameter was in the range of 10-30 μm. MTT detection suggested that there was no significant difference in A value among 3 groups every day after culturing (P gt; 0.05). The mice in 2 groups were in good physical condition and had no respiratory depression, paralysis, convulsion, and death. The hemolysis rate was 1.18% and was lower than the normal level (5%). The SEM showed a large number of attached L929 cells were visible on the surface of the PCLA material at 4 hours after implantation and the cells grew well after 3 days. The PCLA material was infiltrated by the inflammatory cells after 1 week. The inflammatory cells reduced significantly and the fiber began abruption after 8 weeks. Conclusion The biodegradable vascular tissue engineering scaffold material made by the electrospinning process of PCLA has good microstructure without cytotoxicity and has good biocompatibil ity. It can be used as an ideal scaffold for vascular tissue engineering.