Neurodegenerative diseases (NDDs) are a group of heterogeneous neurological disorders that can cause progressive loss of neurons in the central nervous system or peripheral nervous system, resulting in a decline in motor function. Motion capture, as a high-precision and high-resolution technology for capturing human motion data, drives NDDs motor assessment to effectively extract kinematic features and thus assess the patient’s motor ability or disease severity. This paper focuses on the recent research progress in motor assessment of NDDs driven by motion capture data. Based on a brief introduction of NDDs motor assessment datasets, we categorized the assessment methods into three types according to the way of feature extraction and processing: NDDs motor assessment methods based on statistical analysis, machine learning and deep learning. Then, we comparatively analyzed the technical points and characteristics of the three types of methods from the aspects of data composition, data preprocessing, assessment methods, assessment purposes and effects. Finally, we discussed and prospected the development trends of NDDs motor assessment.
The human skeletal muscle drives skeletal movement through contraction. Embedding its functional information into the human morphological framework and constructing a digital twin of skeletal muscle for simulating physical and physiological functions of skeletal muscle are of great significance for the study of "virtual physiological humans". Based on relevant literature both domestically and internationally, this paper firstly summarizes the technical framework for constructing skeletal muscle digital twins, and then provides a review from five aspects including skeletal muscle digital twins modeling technology, skeletal muscle data collection technology, simulation analysis technology, simulation platform and human medical image database. On this basis, it is pointed out that further research is needed in areas such as skeletal muscle model generalization, accuracy improvement, and model coupling. The methods and means of constructing skeletal muscle digital twins summarized in the paper are expected to provide reference for researchers in this field, and the development direction pointed out can serve as the next focus of research.