Objective To summarize the basic research and the cl inical appl ication of biodegradable interbody fusion Cage. Methods Recent l iterature concerning biodegradable interbody fusion Cage at home and abroad was extensively reviewed, and current developments of the basic research and the cl inical appl ication of biodegradable interbody fusion Cage were investigated. Results Basic research showes that the stiffness of biodegradable interbody fusion Cage is lower than that of metall ic Cage, so it can enhance interbody fusion. As interbody fusion proceeded, biodegradable interbody fusion Cage degrades constantly, but the speed of degradation can not keep in parallel with that of fusion. In addition, the tissue response to degradation products is controversy. Cl inical appl ication showes that the biodegradable interbody fusion Cage can enhance interbody fusion and maintain disc space height. The short term results are good, however, the long term results need further observation. Conclusion Biodegradable interbody fusion Cage can effectively enhance interbody fusion.
ObjectiveTo review the research progress and clinical application of allograft bone spacer in cervical and lumbar interbody fusion. MethodsLiterature about allograft bone spacer in cervical and lumbar degenerative disease was reviewed and analyzed, including the advantages and disadvantages of allograft material, fusion rate, effectiveness, and complications. ResultsFusion rate and effectiveness of allograft bone spacers were similar to those of autograft and polyetheretherketone spacers, and they were recommended by many orthopedists. However, indications, long-term effectiveness, and complications were not clear. ConclusionFurther study on allograft bone spacer in cervical and lumbar interbody fusion should be focused on optimal indications and long-term effectiveness.
ObjectiveTo summarize the advances in research on Cage subsidence following lumbar interbody fusion, and provide reference for its prevention.MethodsThe definition, development, clinical significance, and related risk factors of Cage subsidence following lumbar interbody fusion were throughout reviewed by referring to relevant domestic and doreign literature in recent years.ResultsAt present, there is no consensus on the definition of Cage subsidence, and mostly accepted as the disk height reduction greater than 2 mm. Cage subsidence mainly occurs in the early postoperative stage, which weakens the radiological surgical outcome, and may further damage the effectiveness or even lead to surgical failure. Cage subsidence is closely related to the Cage size and its placement location, intraoperative endplate preparation, morphological matching of disk space to Cage, bone mineral density, body mass index, and so on.ConclusionThe appropriate size and shape of the Cage usage, the posterolateral Cage placed, the gentle endplate operation to prevent injury, the active perioperative anti-osteoporosis treatment, and the education of patients to control body weight may help to prevent Cage subsidence and ensure good surgical results.
Objective To evaluate the safety and effectiveness of anterior cervical discectomy and fusion (ACDF) by using zero-profile anchored cage (ZAC) in treatment of consecutive three-level cervical spondylosis, by comparing with plate-cage construct (PCC). Methods A clinical data of 65 patients with cervical spondylosis admitted between January 2020 and December 2022 and met the selection criteria was retrospectively analyzed. During consecutive three-level ACDF, 35 patients were fixed with ZAC (ZAC group) and 30 patients with PCC (PCC group). There was no significant difference in baseline data between the two groups (P>0.05), including gender, age, body mass index, surgical segment, preoperative Japanese Orthopaedic Association (JOA) score, Neck Disability Index (NDI), visual analogue scale (VAS) score, prevertebral soft tissue thickness (PSTT), cervical lordosis, and surgical segmental angle. The operation time, intraoperative blood loss, hospital stay, clinical indicators (JOA score, NDI, VAS score), and radiological indicators (cervical lordosis, surgical segmental angle, implant subsidence, surgical segment fusion, and adjacent segment degeneration), and the postoperative complications [swelling of the neck (PSTT), dysphagia] were recorded and compared between the two groups. Results Patients in both groups were followed up 24-39 months. There was no significant difference in follow-up duration between the two groups (P>0.05). The operation time and intraoperative blood loss were lower in ZAC group than in PCC group, and the length of hospital stay was longer, but there was no significant difference (P>0.05). At each time point after operation, both groups showed significant improvements in JOA score, VAS score, and NDI compared with preoperative scores (P<0.05), but there was no significant difference between the two groups at each time point after operation (P>0.05). Both groups showed an increase in PSTT at 3 days and 3, 6 months after operation compared to preoperative levels (P<0.05), but returned to preoperative levels at last follow-up (P>0.05). The PSTT at 3 days and 3 months after operation were significantly lower in ZAC group than in PCC group (P<0.05), and there was no significant difference between the two groups at 6 months and at last follow-up (P>0.05). The incidences of dysphagia at 3 days and 3 months were significantly lower in ZAC group than in PCC group (P<0.05), while no significant difference was observed at 6 months and last follow-up between the two groups (P>0.05). There was no postoperative complication in both groups including hoarseness, esophageal injury, cough, or hematoma. Both groups showed improvement in cervical lordosis and surgical segmental angle compared to preoperative levels, with a trend of loss during follow-up. The cervical lordosis loss and surgical segmental angle loss were significantly more in the ZAC group than in PCC group (P<0.05). The incidence of implante subsidence was significantly higher in ZAC group than in PCC group (P<0.05). There was no significant difference between the ZAC group and PCC group in the incidences of surgical segment fusion and adjacent segment degeneration (P>0.05). ConclusionIn consecutive three-level ACDF, both ZAC and PCC can achieve satisfactory effectiveness. The former can reduce the incidence of postoperative dysphagia, while the latter can better maintain cervical curvature and reduce the incidence of implant subsidence.
Objective To invest igate the ef fect iveness and signi f icance of percutaneous endoscopic discectomy followed by interbody fusion using B-Twin expandable spinal spacer for degenerative lumbosacral disc disease. Methods Between January 2007 and August 2008, 21 patients with degenerative lumbosacral disc disease were treated with endoscopic discectomy followed by interbody fusion using B-Twin expandable spinal spacer. Among them, there were 13 males and 8 females with an average age of 52 years (range, 28-79 years). And the disease duration ranged from 3 months to 40 years (median, 9 months). The affected segments included T11, 12, T12-L1, L1, 2, and L2, 3 in 1 case respectively, L4, 5 in 4 cases, and L5, S1 in 13 cases. All patients had intractable low back pain or lower extremity radicular symptoms. The placement methods of B-Twin expandable spinal spacer were double sides in 15 cases and single side in 6 cases. Oswestry Disabil ity Index (ODI) and Macnab grading were used to determine the function recovery after operation. And Suk’s standard was used to determine the fusion effects by X-ray. Results All 21 patients were followed up 18 months to 3 years (mean, 23.8 months). Sciatica symptoms disappeared after operation in 19 cases, no significant improvement occurred in 2 cases of thoracic disease. The ODI scores were 79% ± 16% at preoperation, 30% ± 9% at 1 month, 26% ± 10% at 3 months, 21% ± 12% at 6 months, and 20% ± 10% at 18 months after operation, showing significant differences between pre- and postoperation (P lt; 0.05). According to Macnab grading at 6 months postoperatively, the results were excellent in 14 cases, good in 5 cases, and fair in 2 cases with an excellent and good rate of 90.5%. According to Suk et al. standard, the results were excellent in 1 case, good in 19 cases, and poor in 1 case with an excellent and good rate of 95.2%. The muscle strength of the lower extremities had no improvement in 1 case of T11, 12 disc protrusion; pedicle screws fixation and decompression laminectomy were given after 6 months, but no improvement was achieved during follow-up. Protrusion recurred after 4 months in 1 case of L4, 5 disc protrusion, then was cured by laminectomy discectomy. The remaining patients achieved postoperative rel ief. Conclusion Endoscope combined with interbody fusion is a good combination to solve lumbar instabil ity. B-Twin expandable spinal spacer is a minimally invasive fusion choice of L4, 5 and L5, S1.
ObjectiveTo compare the biomechanical differences between the kidney-shaped nano-hydroxyapatite/polyamide 66 (n-HA/PA66) Cage and the bullet-shaped n-HA/PA66 Cage. MethodsL2-L5 spinal specimens were selected from 10 adult male pigs. L2, L3 and L4, L5 served as a motor unit respectively, 20 motor units altogether. They were divided into 4 groups (n=5):no treatment was given as control group (group A); nucleus pulposus resection was performed (group B); bullet-shaped Cage (group C), and kidney-shaped Cage (group D) were used in transforaminal lumbar interbody fusion (TLIF) through left intervertebral foramen and supplemented by posterior pedicle screw fixation. The intervertebral height (IH) and the position of Cages were observed on the X-ray films. The range of motion (ROM) was measured. ResultsThere was no significant difference in the preoperative IH among 4 groups (F=0.166, P=0.917). No significant change was found in IH between at pre- and post-operation in group B (P>0.05); it increased after operation in groups C and D, but difference was not statistically significant (P>0.05). There was no significant difference in the postoperative IH among groups B, C, and D (P>0.05). The distance from Cage to the left margin was (3.06±0.51) mm in group C (close to the left) and (5.68±0.69) mm in group D (close to the middle), showing significant difference (t=6.787, P=0.000). The ROM in all directions were significantly lower in groups C and D than in groups A and B (P<0.05), and in group A than in group B (P<0.05). The right bending and compression ROM of group C were significantly higher than those of group D (P<0.05), but no statistically significant difference was found in the other direction ROM (P>0.05). ConclusionThe bullet-shaped and kidney-shaped Cages have similar results in restoring IH and maintaining the stability of the spine assisted by internal fixation. Kidney-shaped Cage is more stable than bullet-shaped Cage in the axial compression and the bending load opposite implant, it can be placed in the middle and back of the vertebral body more ideally.
【摘要】 目的 探讨纳米羟基磷灰石/聚酰胺66(nano-hydroxyapatite polyamide66,n-HA/PA66)颈椎融合器在颈椎间盘突出症前路手术重建中的临床疗效。 方法 2008年12月-2010年6月,对14例颈椎间盘突出症患者行前路椎间盘切除、椎管减压,以n-HA/PA66椎间融合器支撑植骨、钢板螺钉内固定治疗。随访时间3~12个月,平均6.3个月;随访时以日本矫形外科学会(Japan Orthopaedic Assoctiation, JOA)评分改善率评价患者神经功能恢复情况,复查X线片评估椎间融合器植骨融合情况,包括椎间高度及椎间融合器下沉情况。 结果 14例患者均成功完成颈椎前路减压手术以及椎间融合器的安放固定。所有患者术前症状均得到不同程度的改善,术后3、6、12个月的JOA改善率分别为87.0%、94.0%、97.0%。影像学检查显示所有患者植骨融合,椎间高度及椎间融合器的位置维持良好,无下沉、移位。 结论 n-HA/PA66颈椎间融合器具有早期支撑稳定功能,可有效维持颈椎椎间高度;术后植骨融合率高且便于X线片观察,是颈椎间盘突出症患者前路手术植骨的理想支撑材料,但长期效果需进一步随访观察。【Abstract】 Objective To evaluate the clinical effect of artificial cervical vertebra fusion apparatus of n-HA/PA66 in anterior reconstruction of cervical intervertebral disc herniation. Methods From December 2008 to June 2010, 14 patients with cervical intervertebral disc herniation underwent anterior cervical discectomy,spinal canal decompression,spinal canal decompression and reconstruction by n-HA/PA66 composite artificial vertebral body combined with plate instrumentation. The patients were followed up for 3 to 12 months with an average of 6.3 months. Neurological function was evaluated by improvement rate of JOA score and situations of the supporting body was observed by X-ray in 3,6,and 12 months after the surgery.The intervertebral height,the 1ocations, and the fusion rate of the supporting body were assessed in order to evaluate the stability of the cervical spine and alignment improvements. Results All the patients had undergone the operation successfully.The preoperative symptoms improved to varying degrees.JOA improvement rate were 87.0%, 94.0%, and 97.0% 3,6,and 12 months after the operation,respectively.Imaging studies showed that in all cases graft fusion were achieved,and cervical alignments,intervertebral height,cervical spine stability and the locations of the artificial vertebral body were well maintained.No displacement and subsidence of the artificial vertebral body occurred. Conclusion n-HA/PA66 artificial vertebral body can provide early cervical spine support and stability and cervical intervertebral height.It has a high rate of graft fusion and is convenient to observe by X-ray.Therefore,n-HA/PA66 can be taken as an ideal graft for anterior degenerative cervical spine operation,but further follow-up study is still needed to evaluate the long-term effects.
Objective To compare the clinical outcomes of posterior lumbar interbody fusion(PLIF) using simple cage alone fusion with pedicle screw fixationand autogenous bone grafting and cage fusion with pedicle screw fixation in adult spondylolisthesis. Methods From March 2003 to March 2004,Twenty-seven patients with lumbar spondylolisthesis were divided in two groups. In group A, 15 patients were treated by PLIF using simple cage alone fusion with pedicle screw fixation, including 4 males and 11 females, aging 53-68 years. Isthmic defectswere located at L4 in 9 cases, at L5 in 6 cases. Four patients were smokers.Thepreoperative mean disc space height was 5.4±2.3 mm, the mean percentage of slip was 36.8%±7.2%. In group B, 12 patients were treated by PLIF using autogenous bone grafting and cage fusion with pedicle screw fixation, including 3 males and 9 females, aging 56 years. Isthmic defects were located at L4 in 8 cases, atL5 in 4 cases. Five patients were smokers. The preoperative mean disc space height was 5.7±2.5 mm, the mean percentage of slip was 37.8%±6.2%. Two groupswere compared in the amount of blood loss, duration of hospitalization, back pain, radiating pain, fusion rate, the intervertebral disc space height, the postoperative degree of slip and the fusion rate. Results All patientswere followed up for 24-38 months. The mean follow-up was 29(24-36) months in group A and26(24-38) months in group B. There were no statistically significant differences infollow-up period, age,sex, the location of isthmic defects, smoking, the preoperative disc space height and the percentage of slip between two groups (Pgt;0.05).There were no statistically significant differences in the amount of blood loss, the duration of hospitalization, the fusion time between two groups(Pgt;0.05). But there were statistically significant differences in the back pain score, the radiating pain score and the fusion rate between two groups(Plt;0.05).Thepo stoperative disc space height and the degree of slip of the last follow-up were5.8±2.2 mm and 25.6%±7.2% in group A, 6.2±2.5 mm and 24.1%±7.4 % ingroupB, showing statistically significant difference (Plt;0.05). Conclusion The PLIF using autogenous bone grafting and cage fusion with pedicle screw fixations ismore beneficial to improving the fusion rate and preventing longterm instabilities than simple cage alone fusion with pedicle screw fixation in adult spondylolisthesis.
Objective To compare the effectiveness between three-dimensional (3D) printed porous titanium alloy cage (3D Cage) and poly-ether-ether-ketone cage (PEEK Cage) in the posterior lumbar interbody fusion (PLIF). Methods A total of 66 patients who were scheduled to undergo PLIF between January 2018 and June 2019 were selected as the research subjects, and were divided into the trial group (implantation of 3D Cage, n=33) and the control group (implantation of PEEK Cage, n=33) according to the random number table method. Among them, 1 case in the trial group did not complete the follow-up exclusion study, and finally 32 cases in the trial group and 33 cases in the control group were included in the statistical analysis. There was no significant difference in gender, age, etiology, disease duration, surgical segment, and preoperative Japanese Orthopaedic Association (JOA) score between the two groups (P>0.05). The operation time, intraoperative blood loss, complications, JOA score, intervertebral height loss, and interbody fusion were recorded and compared between the two groups. Results The operations of two groups were completed successfully. There was 1 case of dural rupture complicated with cerebrospinal fluid leakage during operation in the trial group, and no complication occurred in the other patients of the two groups. All incisions healed by first intention. There was no significant difference in operation time and intraoperative blood loss between groups (P>0.05). All patients were followed up 12-24 months (mean, 16.7 months). The JOA scores at 1 year after operation in both groups significantly improved when compared with those before operation (P<0.05); there was no significant difference between groups (P>0.05) in the difference between pre- and post-operation and the improvement rate of JOA score at 1 year after operation. X-ray film reexamination showed that there was no screw loosening, screw rod fracture, Cage collapse, or immune rejection in the two groups during follow-up. At 3 months and 1 year after operation, the rate of intervertebral height loss was significantly lower in the trial group than in the control group (P<0.05). At 3 and 6 months after operation, the interbody fusion rating of trial group was significantly better in the trial group than in the control group (P<0.05); and at 1 year after operation, there was no significant difference between groups (P>0.05). ConclusionThere is no significant difference between 3D Cage and PEEK Cage in PLIF, in terms of operation time, intraoperative blood loss, complications, postoperative neurological recovery, and final intervertebral fusion. But the former can effectively reduce vertebral body subsidence and accelerate intervertebral fusion.
ObjectiveTo compare the clinical and radiological effectiveness of oblique lumbar interbody fusion (OLIF) and posterior lumbar interbody fusion (PLIF) in the treatment of Cage dislodgement after lumbar surgery.MethodsThe clinical data of 40 patients who underwent revision surgery due to Cage dislodgement after lumbar surgery betweem April 2013 and March 2017 were retrospectively analyzed. Among them, 18 patients underwent OLIF (OLIF group) and 22 patients underwent PLIF (PLIF group) for revision. There was no significant difference between the two groups in age, gender, body mass index, intervals between primary surgery and revision surgery, number of primary fused levels, disc spaces of Cage dislodgement, and visual analogue scale (VAS) scores of low back pain and leg pain, Oswestry disability index (ODI), the segmental lordosis (SL) and disc height (DH) of the disc space of Cage dislodgement, and the lumbar lordosis (LL) before revision (P>0.05). The operation time, intraoperative blood loss, hospital stay, and complications of the two groups were recorded and compared. The VAS scores of low back pain and leg pain were evaluated at 3 days, 3, 6, and 12 months after operation, and the ODI scores were evaluated at 3, 6, and 12 months after operation. The SL and DH of the disc space of Cage dislodgement and LL were measured at 12 months after operation and compared with those before operation. CT examination was performed at 12 months after operation, and the fusion of the disc space implanted with new Cage was judged by Bridwell grading standard.ResultsThe intraoperative blood loss in the OLIF group was significantly less than that in the PLIF group (t=−12.425, P=0.000); there was no significant difference between the two groups in the operation time and hospital stay (P>0.05). Both groups were followed up 12-30 months, with an average of 18 months. In the OLIF group, 2 patients (11.1%) had thigh numbness and 1 patient (5.6%) had hip flexor weakness after operation; 2 patients (9.1%) in the PLIF group had intraoperative dural sac tear. The other patients’ incisions healed by first intention without early postoperative complications. There was no significant difference in the incidence of complications between the two groups (χ2=0.519, P=0.642). The VAS scores of low back pain and leg pain, and the ODI score of the two groups at each time point after operation were significantly improved when compared with those before operation (P<0.05); there was no significant difference between the two groups at each time point after operation (P>0.05). At 12 months after operation, SL, LL, and DH in the two groups were significantly increased when compared with preoperative ones (P<0.05); SL and DH in the OLIF group were significantly improved when compared with those in the PLIF group (P<0.05), and there was no significant difference in LL between the two groups (P>0.05). CT examination at 12 months after operation showed that all the operated disc spaces achieved bony fusion. According to the Bridwell grading standard, 12 cases were grade Ⅰ and 6 cases were grade Ⅱ in the OLIF group, and 13 cases were grade Ⅰ and 9 cases were grade Ⅱ in the PLIF group; there was no significant difference between the two groups (Z=–0.486, P=0.627). During follow-up, neither re-displacement or sinking of Cage, nor loosening or fracture of internal fixation occurred.ConclusionOLIF and PLIF can achieve similar effectiveness in the treatment of Cage dislodgement after lumbar surgery. OLIF can further reduce intraoperative blood loss and restore the SL and DH of the disc space of Cage dislodgement better.