【摘要】 目的 探讨脓毒性休克早期液体复苏的临床反应性。 方法 对2008年2月—2010年2月38例采用早期目标定向治疗方案治疗的脓毒性休克患者按是否存活进行分组,就中心静脉压、心率、平均动脉压、输液量、尿量、血乳酸等指标进行评价。 结果 38例采用早期目标定向治疗方案治疗6 h均达标,存活21例(55.26%),死亡17例(44.74%),两组患者输液总量及输液种类差异无统计学意义(Pgt;0.05),存活组6、24 h尿量及血乳酸清除率明显优于死亡组(Plt;0.05)。 结论 血乳酸清除率及尿量可作为脓毒性休克液体复苏有效的临床监测指标。【Abstract】 Objective To study the clinical response to early fluid resuscitation therapy in septic shock patients. Methods Thirty-eight septic shock patients received early goal-directed therapy (EGDT) in the ICU of our hospital from February 2008 to February 2010. The patients were divided into survival group (n=21) and dead group (n=17). Indexes like central venous pressure (CVP), heart rate (HR), mean arterial pressure (MAP), fluid input, urine output, and blood lactate were evaluated. Results Six hours after the EGDT, the results for the patients were all up to standard. There were 21 cases of survival (55.26%) and 17 cases of death (44.74%). The total fluid input and liquid types were similar in the two groups (Pgt;0.05). The urine output and lactate clearance at hour 6 and 24 for the survival group were better than that for the dead group (Plt;0.05). Conclusion The lactate clearance and urine output can be regarded as an surveillance indicator of fluid resuscitation for patients with septic shock.
Objective To evaluate the effects and the clinical significances of liquid resuscitation on blood gas analysis, acid-base balance, electrolytes, acute physiology and chronic health evaluationsⅡ(APACHEⅡ) score of patients with septic shock, and then to analyze the relations between serum chlorine (Cl-) level and APACHEⅡscore and the volume of liquid resuscitation. Methods According to the target of resuscitation (centre venous pressure 8-12mm Hg and mean arterial pressure≥65mm Hg), 21 patients with septic shock received enough fluid for resuscitation during 24h . The results of blood gas analysis, acid-base balance, electrolytes, and APACHE Ⅱ score were compared between pre-resuscitation and 24h post-resuscitation by self-controlled prospective study. The relationships of the level of serum Cl- and APACHEⅡ score with the volume of liquid used in resuscitation were analyzed . Results The mean resus-citation duration was (18.09±4.57) h, and the volume of liquid during 24 h resuscitation was 5 320-11 028mL with mean volume of (7 775±1 735) mL in 21 patients with septic shock. Serum sodium (Na+, mmol/L) and Cl-(mmol/L)levels of post-resuscitation were significant higher than those of pre-resuscitation (Na+:138.71±5.67 versus 135.62±7.23, P=0.024;Cl-:109.10±4.90 versus 101.67±8.59, P=0.000). Compared with the levels of pre-resuscitation, the blood pH value, hematocrit (Hct,%), anion gap (AG, mmol/L), lactic acid (mmol/L), and APACHE Ⅱscore significantly decreased (pH:7.31±0.05 versus 7.37±0.06, P=0.000;Hct:28.48±2.56 versus 32.76±9.19, P=0.049;AG:8.33±3.45 versus 14.17±8.83, P=0.004;lactic acid:1.66±0.89 versus 2.96±1.23, P=0.001;APACHEⅡ:10.90±3.73 versus 17.24±4.06, P=0.000) after 24h resuscitation. The correlation analysis showed that the level of serum Cl- was positively correlated with the volume of liquid used in resuscitation (r=0.717,P<0.01). However, there was no correlation between APACHEⅡscore and the volume of liquid used in resuscitation (P>0.05). Conclusions The target of liquid resuscitation in patients with septic shock should be cautiously determined, including control of the volume of crystal liquid for resuscitation, in order to avoid acid-base imbalance or hyperchloraemia. At the same time, the change in internal environment should be monitored. An optimistic fluid resuscitation to decrease APACHE Ⅱ score in patients with septic shock is unrelated to the volume of liquid resuscitation.
ObjectiveTo explore the value of inferior vena cava inspiratory collapsibility (ΔIVC) in guiding septic shock resuscitation with early goal-directed therapy (EGDT).MethodsA single center, randomized controlled trial was conducted at an 812-bed hospital in Mianyang, Sichuan. Adult patients with early septic shock in the intensive care unit were assessed and treated at defined intervals over 6 h using an ΔIVC-guided resuscitation protocol or an EGDT protocol. Feasibility outcomes were fluid balance and norepinephrine administration. The primary clinical outcomes were in-hospital mortality rate, 90-day survival rate. Secondary outcomes included incidence of acute kidney injury and consumption of health resources.ResultsSixty-eight patients with septic shock were enrolled in this study. Baseline characteristics were similar between the two groups. The ΔIVC-guided septic shock resuscitation group was lower than the EGDT group in the ICU 24 h fluid replacement (L): 3.8 (4.0, 5.3) vs. 4.7 (4.0, 6.6), 72 h liquid positive balance (L): 0.2 (–0.65, 1.2) vs. 2.5 (0.0, 4.1), intensive care unit length of stay (d): 7.5 (5.0, 14.0) vs. 15.0 (7.0, 21.5), mechanical ventilation cumulative time (d): 3.0 (0.0, 7.0) vs. 7.5 (2.2, 12.0), ICU costs (ten thousand yuan): 3.4 (2.1, 5.9) vs. 8.6 (4.2, 16.5), bedside blood purification treatment costs (ten thousand yuan): 2.3 (1.1, 3.3) vs. 6.8 (2.1, 10.0) (P<0.05). No difference was observed in the incidence of acute kidney injury (P > 0.05), in-hospital mortality and 90-day survival between the two groups (log-rank χ2=0.35, P>0.05).ConclusionsAmong patients with septic shock, a ΔIVC-guided septic shock resuscitation, compared with EGDT, did not reduce in-hospital mortality. It might prevent the risk of over resuscitation, shorten the duration of mechanical ventilation, and lead to a better utilization of intensive care unit resources.
The publication of the 2016 version of the Surviving Sepsis Campaign guidelines is a further step to the treatment of sepsis worldwide. This version of guidelines approves new definition of Sepsis-3. Overall, the new guidelines do not change the previous principle of treatment significantly. Some detailed and specific modifications have been made. Understanding and rational use of the new guidelines based on clinical practice, are the key to managing sepsis and performing accurate and effective treatment.
Objective To identify potential hub genes and key pathways in the early period of septic shock via bioinformatics analysis. MethodsThe gene expression profile GSE110487 dataset was downloaded from the Gene Expression Omnibus database. Differentially expressed genes were identified by using DESeq2 package of R project. Then Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were constructed to investigated pathways and biological processes using clusterProfiler package. Subsequently, protein-protein interaction (PPI) network was mapped using ggnetwork package and the molecular complex detection (MCODE) analysis was implemented to further investigate the interactions of differentially expressed genes using Cytoscape software. Results A total of 468 differentially expressed genes were identified in septic shock patients with different responses who accepted early supportive hemodynamic therapy, including 255 upregulated genes and 213 downregulated genes. The results of GO and the KEGG pathway enrichment analysis indicated that these up-regulated genes were highly associated with the immune-related biological processes, and the down-regulated genes are involved in biological processes related to organonitrogen compound, multicellular organismal process, ion transport. Finally, a total of 23 hub genes were identified based on PPI and the subcluster analysis through MCODE software plugin in Cytoscape, which included 19 upregulated hub genes, such as CD28, CD3D, CD8B, CD8A, CD160, CXCR6, CCR3, CCR8, CCR9, TLR3, EOMES, GZMB, PTGDR2, CXCL8, GZMA, FASLG, GPR18, PRF1, IDO1, and additional 4 downregulated hub genes, such as CNR1, GPER1, TMIGD3, GRM2. KEGG pathway enrichment analysis and GO functional annotation showed that differentially expressed genes were primarily associated with the items related to cytokine-cytokine receptor interaction, natural killer cell mediated cytotoxicity, hematopoietic cell lineage, T cell receptor signaling pathway, phospholipase D signaling pathway, cell adhesion molecules, viral protein interaction with cytokine and cytokine receptor, primary immunodeficiency, graft-versus-host disease, type 1 diabetes mellitus. Conclusions Some lymphocytes such as T cells and natural killer cells, cytokines and chemokines participate in the immune process, which plays an important role in the early treatment of septic shock, and CD160, CNR1, GPER1, and GRM2 may be considered as new biomarkers.
Objective To investigate whether pulse pressure variation( ΔPP) reflect the effects of PEEP and fluid resuscitation ( FR) on hemodynamic effects. Methods Twenty critical patients with acute lung injury was ventilated with volume control ( VT =8 mL/kg, Ti/Te = 1∶2) , and PaCO2 was kept at 35 to 45 mm Hg. PEEP was setted as 5 cm H2O and 15 cmH2O in randomized order. Hemodynamic parameters including cardiac index, pulse pressure, central venous pressure, etc. were monitered by PiCCO system.Measurements were performed after the application of 5 cmH2O PEEP ( PEEP5 group) and 15 cm H2OPEEP ( PEEP15 group) respectively. When the PEEP-induced decrease in cardiac index ( CI) was gt; 10% ,measurements were also performed after fluid resuscitation. Results Compared with PEEP5 group, CI was decreased significantly in PEEP15 group( P lt;0. 05) , and ΔPP was increased significantly( P lt; 0. 05) . In 14 patients whose PEEP-induced decrease in CI was gt; 10% , fluid resuscitation increased CI from ( 3. 01 ±0. 57) L·min - 1·m- 2 to ( 3. 62 ±0. 68) L·min- 1 ·m- 2 ( P lt;0. 01) , and decreased ΔPP from ( 17 ±3) % to ( 10 ±2) % ( P lt;0. 01) . PEEP15 -induced decrease in CI was correlated negatively with ΔPP on PEEP5 ( r= - 0.91, P lt;0. 01) and with the PEEP15 -induced increase in ΔPP ( r = - 0. 79, P lt;0. 01) . FR-induced changes in CI correlated with ΔPP before FR ( r =0. 96, P lt; 0. 01) and with the FR-induced decrease in ΔPP ( r= - 0. 95, P lt; 0. 01) . Conclusions In ventilated patients with ALI, ΔPP may be a simple anduseful parameter in predicting and assessing the hemodynamic effects of PEEP and FR.
ObjectiveTo determine the effects of different volume fluid resuscitation on intestinal injury and the permeability of intestine in hemorrhagic shock rats. MethodsSprague-Dawley male rats(n=72) were randomly equally divided into 4 groups after the model establishment of blood pressure-controlled hemorrhage, 45, 30, and 15 mL/(kg·h) of fluid resuscitation were performed in high dosage of resuscitation(HLR), moderate dosage of resuscitation(MLR), and low dosage of resuscitation(LLR) group respectively, but rats of Sham group didn't accept fluid resuscitation. After resuscitation, ten centimeters ileum was harvested for testing intestinal permeability. Then 6 rats of each group were sacrificed at 24, 48, and 72 hours after fluid resuscitation respectively. Over the specified time interval, blood was collected for testing levels of lactic acid and plasma tumor necrosis factor-α(TNF-α). The ileums of 3 resuscitation groups were obtained for testing the ratio of wet weight to dry weight and observing the histological changes. ResultsAfter resuscitation, the intestinal permeability was higher in HLR group(P<0.05). At 3-8 hours after resuscitation, rats of Sham group were all died, and the other rats of 3 groups were all alive. The level of plasma lactic acid was lower in LLR group than those of other 2 groups at 24 hours(P<0.05). The levels of TNF-α were higher in HLR group than those of other 2 groups at 24, 48, and 72 hours(P<0.05), and at 48 hours, level of TNF-α in LLR group was lower than MLR group(P<0.05). At 24 hours after resuscitation, ratio of intestinal wet weight to dry weight in LLR group was the lowest, and HLR group was the highest(P<0.05). According to the histopathology, intestinal injuries of the 3 groups were tend to be remission with the time, and at 48 and 72 hours after resuscitation, intestinal villus of LLR group appeared to be normal. ConclusionLimited fluid resuscitation of 15 mL/(kg·h) could not only decrease the levels of lactic acid and TNF-α, but also moderate the intestinal permeability and the intestinal injury in early stage after shock and surgery.