west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "深度学习" 106 results
  • Research on Clinical Electrocardiogram Classification Algorithm Based on Ensemble Learning

    With the increasing number of electrocardiogram (ECG) data, extensive application requirements of computer-aided ECG analysis have occurred. In the paper, we propose a variety of strategies to improve the performance of clinical ECG classification algorithm based on Lead Convolutional Neural Network (LCNN). Firstly, we obtained two classifiers by using different preprocessing methods and training methods in the study. Then, we applied the multiple output prediction method to both of them independently. Finally, the Bayesian approach was employed to fuse them. Tests conducted using more than 150 000 ECG records showed that the proposed method had an accuracy of 85.04% and the area under receiver operating characteristic curve (AUC) was 0.918 5, which significantly outperforms traditional methods based on feature extraction techniques.

    Release date:2016-10-24 01:24 Export PDF Favorites Scan
  • Research progress of computer-aided diagnosis in cancer based on deep learning and medical imaging

    The dramatically increasing high-resolution medical images provide a great deal of useful information for cancer diagnosis, and play an essential role in assisting radiologists by offering more objective decisions. In order to utilize the information accurately and efficiently, researchers are focusing on computer-aided diagnosis (CAD) in cancer imaging. In recent years, deep learning as a state-of-the-art machine learning technique has contributed to a great progress in this field. This review covers the reports about deep learning based CAD systems in cancer imaging. We found that deep learning has outperformed conventional machine learning techniques in both tumor segmentation and classification, and that the technique may bring about a breakthrough in CAD of cancer with great prospect in the future clinical practice.

    Release date:2017-04-13 10:03 Export PDF Favorites Scan
  • Severity classification of chronic obstructive pulmonary disease based on deep learning

    In this paper, a deep learning method has been raised to build an automatic classification algorithm of severity of chronic obstructive pulmonary disease. Large sample clinical data as input feature were analyzed for their weights in classification. Through feature selection, model training, parameter optimization and model testing, a classification prediction model based on deep belief network was built to predict severity classification criteria raised by the Global Initiative for Chronic Obstructive Lung Disease (GOLD). We get accuracy over 90% in prediction for two different standardized versions of severity criteria raised in 2007 and 2011 respectively. Moreover, we also got the contribution ranking of different input features through analyzing the model coefficient matrix and confirmed that there was a certain degree of agreement between the more contributive input features and the clinical diagnostic knowledge. The validity of the deep belief network model was proved by this result. This study provides an effective solution for the application of deep learning method in automatic diagnostic decision making.

    Release date:2017-12-21 05:21 Export PDF Favorites Scan
  • Research of electroencephalography representational emotion recognition based on deep belief networks

    In recent years, with the rapid development of machine learning techniques,the deep learning algorithm has been widely used in one-dimensional physiological signal processing. In this paper we used electroencephalography (EEG) signals based on deep belief network (DBN) model in open source frameworks of deep learning to identify emotional state (positive, negative and neutrals), then the results of DBN were compared with support vector machine (SVM). The EEG signals were collected from the subjects who were under different emotional stimuli, and DBN and SVM were adopted to identify the EEG signals with changes of different characteristics and different frequency bands. We found that the average accuracy of differential entropy (DE) feature by DBN is 89.12%±6.54%, which has a better performance than previous research based on the same data set. At the same time, the classification effects of DBN are better than the results from traditional SVM (the average classification accuracy of 84.2%±9.24%) and its accuracy and stability have a better trend. In three experiments with different time points, single subject can achieve the consistent results of classification by using DBN (the mean standard deviation is1.44%), and the experimental results show that the system has steady performance and good repeatability. According to our research, the characteristic of DE has a better classification result than other characteristics. Furthermore, the Beta band and the Gamma band in the emotional recognition model have higher classification accuracy. To sum up, the performances of classifiers have a promotion by using the deep learning algorithm, which has a reference for establishing a more accurate system of emotional recognition. Meanwhile, we can trace through the results of recognition to find out the brain regions and frequency band that are related to the emotions, which can help us to understand the emotional mechanism better. This study has a high academic value and practical significance, so further investigation still needs to be done.

    Release date:2018-04-16 09:57 Export PDF Favorites Scan
  • Optimization of tuberculosis diagnosis based on artificial intelligence strategy

    Tuberculosis is one of the major infectious diseases that seriously endanger human health. Since 2014, it has surpassed human immunodeficiency virus/acquired immunodeficiency syndrome as the first infectious disease in patients with single pathogens. China is the third-largest country in the world in terms of high burden of tuberculosis. In 2016, there were about 900 000 new cases of tuberculosis in China. China is facing a severe tuberculosis epidemic, especially for the early diagnosis of tuberculosis and misdiagnosis of tuberculosis, which leads to delay in treatment and the spread of tuberculosis. With the application of artificial intelligence in the medical field, machine learning and deep learning methods have shown important value in the diagnosis of tuberculosis. This article will explain the application status and future development of machine learning and deep learning in the diagnosis of tuberculosis.

    Release date:2018-08-20 02:24 Export PDF Favorites Scan
  • Applications of generative adversarial networks in medical image processing

    In recent years, researchers have introduced various methods in many domains into medical image processing so that its effectiveness and efficiency can be improved to some extent. The applications of generative adversarial networks (GAN) in medical image processing are evolving very fast. In this paper, the state of the art in this area has been reviewed. Firstly, the basic concepts of the GAN were introduced. And then, from the perspectives of the medical image denoising, detection, segmentation, synthesis, reconstruction and classification, the applications of the GAN were summarized. Finally, prospects for further research in this area were presented.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
  • Research status of artificial intelligence in screening and diagnosis of breast cancer

    ObjectiveTo study the application of artificial intelligence based on neural network in breast cancer screening and diagnosis, and to summarize its current situation and clinical application value.MethodThe combined studies of neural network and artificial intelligence in the directions of breast mammography, breast ultrasound, breast magnetic resonance, and breast pathology diagnosis in CNKI and PubMed database were reviewed.ResultsPublic databases of mammography, such as Digital Database for Screening Mammography (DDSM), provided raw materials for the research of neural network in the field of mammography. Mammography was the most widely used data for screening and diagnosis of breast diseases by neural network. In the field of mammography and color doppler ultrasound, neural network could segment, measure, and analyze the characteristics, judge the benign or malignant, and issue a structured report. The application of neural network in the field of breast ultrasound focused on the diagnosis and treatment of benign and malignant breast diseases. Samsung Madison Group taken the lead in grafting research results into ultrasound instruments. Breast MRI had a lot of high-throughput information, which had became the breakthrough point for the joint study of artificial neural network and imaging omics. Pathological images had more data information to be measured, and quantitative analysis of data was the advantage of neural network. The combination of the two kinds of methods could significantly improve the diagnosis time of pathologists.ConclusionsTo study the application of artificial intelligence in breast cancer screening and diagnosis is to analyze the application of neural network in breast imaging and pathology. At present, artificial intelligence screening can be used as a physician assistant and an objective diagnostic reference assistant, to improve the diagnosis of breast disease. With the development of medical image histology and neural network, the application of artificial intelligence in medical field can be extended to surgical method design, efficacy evaluation, prognosis analysis, and so on.

    Release date:2019-05-08 05:37 Export PDF Favorites Scan
  • Research progress on computed tomography image detection and classification of pulmonary nodule based on deep learning

    Computer-aided diagnosis based on computed tomography (CT) image can realize the detection and classification of pulmonary nodules, and improve the survival rate of early lung cancer, which has important clinical significance. In recent years, with the rapid development of medical big data and artificial intelligence technology, the auxiliary diagnosis of lung cancer based on deep learning has gradually become one of the most active research directions in this field. In order to promote the deep learning in the detection and classification of pulmonary nodules, we reviewed the research progress in this field based on the relevant literatures published at domestic and overseas in recent years. This paper begins with a brief introduction of two widely used lung CT image databases: lung image database consortium and image database resource initiative (LIDC-IDRI) and Data Science Bowl 2017. Then, the detection and classification of pulmonary nodules based on different network structures are introduced in detail. Finally, some problems of deep learning in lung CT image nodule detection and classification are discussed and conclusions are given. The development prospect is also forecasted, which provides reference for future application research in this field.

    Release date:2019-08-12 02:37 Export PDF Favorites Scan
  • Research progress and challenges of deep learning in medical image registration

    With the development of image-guided surgery and radiotherapy, the demand for medical image registration is stronger and the challenge is greater. In recent years, deep learning, especially deep convolution neural networks, has made excellent achievements in medical image processing, and its research in registration has developed rapidly. In this paper, the research progress of medical image registration based on deep learning at home and abroad is reviewed according to the category of technical methods, which include similarity measurement with an iterative optimization strategy, direct estimation of transform parameters, etc. Then, the challenge of deep learning in medical image registration is analyzed, and the possible solutions and open research are proposed.

    Release date:2019-08-12 02:37 Export PDF Favorites Scan
  • Review of research on detection and tracking of minimally invasive surgical tools based on deep learning

    The application of minimally invasive surgical tool detection and tracking technology based on deep learning in minimally invasive surgery is currently a research hotspot. This paper firstly expounds the relevant technical content of the minimally invasive surgery tool detection and tracking, which mainly introduces the advantages based on deep learning algorithm. Then, this paper summarizes the algorithm for detection and tracking surgical tools based on fully supervised deep neural network and the emerging algorithm for detection and tracking surgical tools based on weakly supervised deep neural network. Several typical algorithm frameworks and their flow charts based on deep convolutional and recurrent neural networks are summarized emphatically, so as to enable researchers in relevant fields to understand the current research progress more systematically and provide reference for minimally invasive surgeons to select navigation technology. In the end, this paper provides a general direction for the further research of minimally invasive surgical tool detection and tracking technology based on deep learning.

    Release date:2019-12-17 10:44 Export PDF Favorites Scan
11 pages Previous 1 2 3 ... 11 Next

Format

Content