Objective To explore the injury mechanism of the severethoracolumbar burst fracture and the necessity of anterior decompression and reconstruction with internal fixation. Methods From January 1999 to January 2004, 21 patients were treated with anterior decompression and reconstruction. The fractures were located at T12 in 6 patients, L1 in12, L2 in 4, L3 in 3,and L4 in 1. Four patients were treated with the “anterior approach” and “posterior approach” surgeries for severe column fractures.Results All the patients were restored to the normal physiological radian, and the spinal canal was decompressed completely. They werefollowed up for 1-6 years, and the bony fusion was observed radiologically.The spinal cord function was improved to the 1-3 Frankel grade in all the patients except 2. There were no such complications as leakage of the cerebrospinal fluid, platescrew loosening or breaking, or segment instability. The clinical effects were satisfactory. Conclusion The operation of the anterior decompression and reconstruction with internal fixation for severe thoracolumbar burst fracture has advantages of complete decompression, full bonegrafting, and firm internal fixation. It canrestore the spinal height and improve the spinal cord function.
Objective To investigate the effect of the sequence of intermediate instrumentation with long screws and distraction-reduction on mild to moderate thoracolumbar fractures treated by posterior open and short-segmental fixation. MethodsThe clinical data of 68 patients with mild to moderate thoracolumbar burst fractures who met the selection criteria between January 2016 and June 2019 were retrospectively analyzed. The patients were divided into group ISDRF (intermediate screws then distraction-reduction fixation, 32 cases) and group DRISF (distraction-reduction then intermediate screws fixation, 36 cases) according to the different operation methods. There was no significant difference between the two groups in age, gender, body mass index, fracture segment, cause of injury, and preoperative load-sharing classification score, thoracolumbar injury classification and severity score, vertebral canal occupational rate, back pain visual analogue scale (VAS) score, anterior height of fractured vertebra, and Cobb angle (P>0.05). The operation time, intraoperative blood loss, complications, and fracture healing time were recorded and compared between the two groups. The vertebral canal occupational rate, anterior height of fractured vertebra, kyphosis Cobb angle, and back pain VAS score before and after operation were used to evaluate the effectiveness. Results There was no significant difference in intraoperative blood loss and operation time between the two groups (P>0.05). No vascular or spinal nerve injury and deep infections or skin infections occurred in both groups. At 1 week after operation, the vertebral canal occupational rate in the two groups was significantly improved when compared with that before operation (P<0.05), no significant difference was found in the difference of vertebral canal occupational rate before and after operation and improvement between the two groups (P>0.05). The patients in both groups were followed up 18-24 months, with an average of 22.3 months. All vertebral fractures reached bone union at 6 months postoperatively. At last follow-up, there was no internal fixation failures such as broken screws, broken rods or loose screws, but there were 2 cases of mild back pain in the ISDRF group. The intra-group comparison showed that the back pain VAS score, the anterior height of fractured vertebra, and the Cobb angle of the two groups were significantly improved at each time point postoperatively (P<0.05); the VAS scores at 12 months postoperatively and last follow-up were also improved when compared with that at 1 week postoperatively (P<0.05). At last follow-up, the anterior height of fractured vertebra in the ISDRF group was significantly lost when compared with that at 1 week and 12 months postoperatively (P<0.05), the Cobb angle had a significant loss when compared with that at 1 week postoperatively (P<0.05); the anterior height of fractured vertebra and Cobb angle in DRISF group were not significantly lost when compared with that at 1 week and 12 months postoperatively (P>0.05). The comparison between groups showed that there was no significant difference in the remission rate of VAS score between the two groups at 1 week postoperatively (P>0.05), the recovery value of the anterior height of fractured vertebra in ISDRF group was significantly higher than that in DRISF group (P<0.05), the loss rate at last follow-up was also significantly higher (P<0.05); the correction rate of Cobb angle in ISDRF group was significantly higher than that in DRISF group at 1 week postoperatively (P<0.05), but there was no significant difference in the loss rate of Cobb angle between the two groups at last follow-up (P>0.05). ConclusionIn the treatment of mild to moderate thoracolumbar burst fractures with posterior short-segment fixation, the instrumentation of long screws in the injured vertebrae does not affect the reduction of the fracture fragments in the spinal canal. DRISF can better maintain the restored anterior height of the fractured vertebra and reduce the loss of kyphosis Cobb angle during the follow-up, indicating a better long-term effectiveness.
ObjectiveTo compare the effective of short-segment pedicle instrumentation with bone grafting and pedicle screw implanting in injured vertebra and cross segment pedicle instrumentation with bone grafting in injured vertebra for treating thoracolumbar fractures. MethodsA prospective randomized controlled study was performed in 40 patients with thoracolumbar fracture who were in accordance with the inclusive criteria between June 2010 and June 2012. Of 40 patients, 20 received treatment with short-segment pedicle screw instrumentation with bone grafting and pedicle screw implanting in injured vertebra in group A, and 20 received treatment with cross segment pedicle instrumentation with bone grafting in injured vertebra in group B. There was no significant difference in gender, age, affected segment, disease duration, Frankel grade, Cobb angle, compression rate of anterior verterbral height, visual analogue scale (VAS) score, and Japanese Orthopaedic Association (JOA) score between 2 groups before operation (P>0.05). The operation time, blood loss, Cobb angle, compression rate of anterior vertebral height, loss of disc space height, Frankel grade, VAS and JOA scores were compared between 2 groups. ResultsThere was no significant difference in the operation time and blood loss between 2 groups (P>0.05). Primary healing of incision was obtained in all patients, and no early complication of infection or lower limb vein thrombus occurred. Forty patients were followed up 12-16 months (mean, 14.8 months). No breaking or displacement of internal fixation was observed. The improvement of Frankel grading score was 0.52±0.72 in group A and 0.47±0.63 in group B, showing no significant difference (t=0.188, P=0.853) at 12 months after operation. The Cobb angle, compression rate of anterior verterbral height, and VAS score at 1 week and 12 months, and JOA score at 12 months were significantly improved when compared with preoperative ones in 2 groups (P<0.05). No significant difference was found in Cobb angle, disc space height, VAS score, and JOA score between 2 groups at each time point (P>0.05), but the compression rate of anterior verterbral height in group A was significantly lower than that in group B (P<0.05). The loss of disc space height next to the internal fixation or the injured vertebra was observed in 2 groups at 12 months, but showing no significant difference (P>0.05). ConclusionCompared with cross segment pedicle instrumentation, short-segment pedicle screw instrumentation with bone grafting and pedicle screw implanting in injured vertebra can recover and maintain the affected vertebra height in treating thoracolumbar fractures, but it could not effectively prevent degeneration of adjacent segments and the loss of kyphosis correction degree.
ObjectiveTo investigate the effects of anterior single segment fixation on the spinal biomechanical stabilization in the treatment of thoracolumbar burst fracture of Denis type B with pedicle injury. MethodsSix fresh human cadaveric spine specimens (T11-L3) were harvested as normal control (group A). Then the L1 Denis type B fracture model was created by the hemi-corpectomy method. Each specimen was tested in 3 different scenarios: anterior single segment (T12, L1) fixation with the integrity of the pedicle (group B), anterior single segment fixation with the resection of the unilateral pedicle (group C), and anterior single segment fixation with the resection of the bilateral pedicles (group D). Range of motion (ROM) in flexion/extension, bilateral bending, and bilateral axial rotation was measured by spinal three-dimensional measuring system under pure moments of 8.0 N·m. ResultsThe ROM values of T12, L1 in flexion, extension, and right/left lateral bending of groups B, C, and D were significantly lower than those of group A (P<0.05); group D was significantly higher than groups B and C (P<0.05); but groups B and C showed no significant difference (P>0.05). The ROM values of T12, L1 in right/left axial rotation of groups B and C were significantly lower than those of groups A and D (P<0.05), but there was no significant difference (P>0.05) between groups B and C and between groups A and D. The ROM values of L1, 2 in flexion, extension, right/left lateral bending, and right/left axial rotation showed no significant difference between groups (P>0.05). ConclusionResection of the unilateral pedicle has litter effects on the spine biomechanical stabilization of the anterior single segment fixation in the 6 degrees of freedom. However, the bilateral resection results show significant decrease in flexion, extension, lateral bending, and rotation motion stability by the single segment fixation devices, especially in the axial rotation aspect.
Objective To evaluate the method of the allogenous boneplate reconstructing the spinal channel and grafting in treatment of thoracolumbar burst fracture with paraplegia. Methods Thirty-six patients with thoracolumbar burst fracture with paraplegia were included in this study. Their ages ranged from 18 to 56 (average, 38). The vertebral injury involvedT11 in 3 patients,T12 in 10 patients,L1 in 14 patients,L2 in 7 patients,and L3 in 2 patients. Neurological deficits were classified by the Frankel grading. There were 9 patients in grade A, 11 patients in grade B, 13 patients in grade C, and 3 patients in grade D. All the patients were treatedwith the anterior approach, decompression of the spinal channel, interbody graft, and internal fixation. The grafting materials consisted of the allogenous femoral bone plate that was degreased in advance and implanted in the intervertebral posterior region, with cut ribs and bone mills during the decompression. Results Postoperative CT scanning showed clearance of the spinal cord compression and expansion of the spine channel. During the follow-up period averaged 2 years, almost all the patients showed an improvement in the neurological function. Spinal fusion occurred in 32 patients. There was no screw loosened or broken. Only 1 patient failed to achieve the fusion. Conclusion The anterior approach, allograft bone plate reconstructing the spine channel is a safe and effective method in treatment of the thoracolumbar burst fracture with paraplegia, which may be a replacement of the autogenous illiac bone graft.
ObjectiveTo evaluate the feasibility and the effectiveness of minimally invasive passage in posterior laminotomy decompression and intervertebral bone grafting combined with percutaneous pedicle screw fixation for the treatment of Denis type B thoracolumbar burst fractures. MethodsBetween January 2013 and March 2015, 53 patients with Denis type B thoracolumbar burst fractures were treated by minimally invasive passage in posterior laminotomy decompression and intervertebral bone grafting combined with percutaneous pedicle screw fixation. There were 37 males and 16 females with a mean age of 43 years (range, 16-57 years). The causes included falling injury from height in 23 cases, traffic accident injury in 15 cases, heavy pound injury in 7 cases, and falling injury in 8 cases. The time between injury and operation was 7 hours to 12 days (mean, 6.7 days). The involved segments included T11 in 2 cases, T12 in 7 cases, L1 in 20 cases, L2 in 18 cases, and L3 in 6 cases; based on the neurological classification of spinal cord injury by American Spinal Injury Association (ASIA), 3 cases were rated as grade A, 5 cases as grade B, 12 cases as grade C, 24 cases as grade D, and 9 cases as grade E. The operation time, bleeding volume, and postoperative drainage were recorded; postoperative visual analogue scale (VAS) was used for pain evaluation, and ASIA for neurological function assessment; CT and X-ray films were taken to observe fracture healing, bone fusion, and grafted bone absorption; The vertebral canal patency rate was calculated; the relative height of fractured vertebrae and Cobb angle were measured. ResultsThe operation was successfully completed in all patients; the average operation time was 150 minutes (range, 90-240 minutes); the average bleeding volume was 350 mL (range, 50-500 mL); the average postoperative drainage was 80 mL (range, 20-150 mL); and the average VAS score was 2.3 (range, 1.5-4.7) at 3 days after operation. The incisions healed primarily. All the patients were followed up 12-19 months (mean, 15 months). All fractures healed at 3-9 months (mean, 6 months). No complications of broken nails, broken rod, and screw loosening occurred. At last follow-up, the vertebral canal patency rate was significantly improved when compared with preoperative value (t=27.395, P=0.000). The Cobb angle, and the anterior and posterior heights of of traumatic vertebra were significantly improved at 1 week, 1 year, and last follow-up when compared with preoperative ones (P < 0.05), but there was no significant difference between different time points after operation (P > 0.05). The neurological function was improved in different degrees; 1 case was rated as grade A, 4 cases as grade B, 7 cases as grade C, 15 cases as grade D, and 26 cases as grade E, showing significant difference when compared with preoperative one (Z=-5.477, P=0.000). ConclusionMinimally invasive passage in posterior laminotomy decompression, bone graft in the injured vertebrae combined with percutaneous pedicle screw fixation is an effective method to treat Denis type B thoracolumbar burst fractures, which not only can fully decompression, but also can effectively maintain the postoperative injured vertebral height, reduce the postoperative failure risk of internal fixation and decrease operation trauma.
Objective To evaluate the cl inical outcomes of anterior decompression, bone graft and internal fixation in treating fourth lumbar burst fractures with il iac fenestration. Methods From February 2001 to May 2006, 8 cases of fourth lumbar burst fractures were treated by anterior decompression, correction, reduction, il iac autograft, Z-plate internal fixation with il iac fenestration. Of them, there were 7 males and 1 female, aging 24-46 years with an average of 29.3 years, including 3 cases of Denis type A and 5 cases of Denis type B. The decompression, intervertebral height were compared betweenpreoperation and postoperation by CT scanning. According to Frankel assessment for neurological status, 2 cases were at grade C, 5 at grade D and 1 at grade E before operation. Four cases had different degrees of disturbance of sphincter. Time from injury to operation was 8 hours to 11 days. The preoperative height of the anterior border of the L4 vertebral body was (13.8 ± 2.3) mm, the Cobb angel of fractured vertebral body was (13.2 ± 2.5)°, the vertebral canal sagittal diameter of L4 was (10.6 ± 3.5) mm. The bone graft volume was (7.5 ± 1.3) cm3 during operation. Results Operations were performed successfully. The mean operative time was (142 ± 25) minutes and the mean amount of blood loss was (436 ± 39) mL. The incisions obtained heal ing by first intention after operation. Two cases suffered donor site pain and recevied no treatment. The follow-up time of 8 cases was from 21 months to 52 months (mean 24.5 months). At one week after operation, the height of the anterior border of the L4 vertebral body was (32.5 ± 2.6) mm, the Cobb angel of fractured vertebral body was (6.8 ± 3.7)°, and the vertebral canal sagittal diameter of L4 was (19.8 ± 5.1) mm, showing significant difference when compared with those of preoperation (P lt; 0.01). At the final follow-up, the results showed that the pressure was reduced sufficiently, all autograft fused well, the neurological status improved at Frankel grade from C to D in 1 patient, from D to E in 3 patients, but the others had no improvement. In 4 patients who had disturbance of sphincter, 3 restored to normal and 1 was better off. Conclusion Cl inical outcomes of anterior surgery for fourth lumbar burst fractures with il iac fenestration are satisfactory. It can facil icate operation, reduce the pressure sufficiently, maintenance intervertebral height and recover the neurological function.
Objective To assess the effectiveness of percutaneous pedicle screw fixation and minimally invasive decompression in the same incision for type A3 thoracolumbar burst fracture. Methods Between May 2014 and February 2016, 43 cases of type A3 thoracolumbar burst fracture with or without nerve symptoms were treated with pedicle screw fixation and neural decompression. Of them, 21 patients underwent percutaneous pedicle screw fixation and minimally invasive decompression in the same incision (percutaneous group), and the other 22 patients underwent traditional open surgery (open group). There was no significant difference in gender, age, cause of injury, fractures level, preoperative American Spinal Injury Association (ASIA) grade, thoracolumbar injury classification and severity (TLICS) score, load-sharing classification, height of injury vertebrae, kyphotic Cobb angle, and spinal canal encroachment between 2 groups (P>0.05). The length of soft tissue dissection, operation time, intraoperative blood loss, postoperative drainage, X-ray exposure times, and incision visual analogue scale (VAS) score at 1 day after operation were recorded and compared. At last follow-up, Japanese Orthopaedic Association (JOA) score and low back pain VAS score were recorded and compared respectively. The ASIA grade recovery was evaluated; the height of injury vertebrae, kyphotic Cobb angle, and spinal canal encroachment were assessed postoperatively. Results Percutaneous group was significantly better than open group in the length of soft tissue dissection, intraoperative blood loss, postoperative drainage, and incision VAS at 1 day after operation (P<0.05), but no significant difference was found in operation time between 2 groups (P>0.05); however, X-ray exposure times of open group were significantly better than that of percutaneous group (P<0.01). The patients were followed up 12 to 19 months (mean, 15.1 months) in 2 groups. All patients achieved effective decompression. No complications of iatrogenic neurological injury and internal fixation failure occurred. The height of injury vertebrae, kyphotic Cobb angle, and spinal canal encroachment of the fractured vertebral body were significantly improved at 3 days after operation when compared with preoperative ones (P<0.05), but no significant difference was found between 2 groups (P>0.05). At last follow-up, JOA score and low back pain VAS score of percutaneous group were significantly better than those of open group (P<0.05). The neurological function under grade E was improved at least one ASIA grade in 2 groups, but no significant difference was shown between 2 groups (Z=0.480, P=0.961). Conclusion Percutaneous pedicle screw fixation and minimally invasive decompression in the same incision for type A3 thoracolumbar burst fracture has satisfactory effectiveness. And it has the advantages of minimal trauma, quick recovery, safeness, and reliableness.
ObjectiveTo investigate the efficacy and safety of over-bending rod reduction and fixation technique via posterior approach in the treatment of unstable fresh thoracolumbar burst fracture.MethodsA clinical data of 27 patients with unstable fresh thoracolumbar burst fracture, who were met the inclusive criteria and admitted between January 2018 and October 2019, was retrospectively analyzed. There were 15 males and 12 females with an average age of 41.8 years (range, 26-64 years). The fractures were caused by falling from height in 14 cases, traffic accident in 8 cases, and crushing by a heavy objective in 5 cases. The interval between injury and operation was 1-7 days (mean, 3.2 days). The injured fracture was located at T10 in 1 case, T11 in 3 cases, T12 in 6 cases, L1 in 7 cases, L2 in 7 cases, and L3 in 3 cases. According to AO classification, there were 11 cases of type A3, 7 cases of type B, and 9 cases of type C. Neurological function was rated as grade A in 3 cases, grade B in 7 cases, grade C in 5 cases, and grade D in 12 cases according to the American Spinal Injury Association (ASIA) grading. All cases were treated by over-bending rod reduction and fixation technique via posterior approach, and 16 cases were combined with limited fenestration decompression. The evaluation indicators consisted of operation time, intraoperative blood loss, the compression ratio of the anterior vertebral height, the invasion rate of the injured vertebra into the spinal canal, the Cobb angle of segmental kyphosis, visual analogue scale (VAS) score, and Oswestry Disability Index (ODI).ResultsThe operation time was 67-128 minutes (mean, 81.6 minutes), and the intraoperative blood loss was 105-295 mL (mean, 210 mL). All patients were followed up 12-23 months (mean, 17.2 months). A total of 178 pedicle screws were implanted during operation, and the accuracy of the implantation was 98.9% (176/178). The compression ratios of the anterior vertebral height at the early postoperatively and last follow-up were significantly increased when compared with preoperative one (P<0.05), and the invasion rate of the injured vertebra into the spinal canal, Cobb angle, VAS score, and ODI were significantly lower than those preoperatively (P<0.05). Except that the ODI at last follow-up was significantly lower than that of the early postoperative period (P<0.05), there was no significant difference between the last follow-up and the early postoperative period for other indicators (P>0.05). At last follow-up, the neurological function was rated as grade A in 1 case, grade B in 2 cases, grade C in 4 cases, grade D in 9 cases, and grade E in 11 cases according to the ASIA grading, showing significant difference when compared with that before operation (Z=–3.446, P=0.001).ConclusionOver-bending rod reduction and fixation technique can effectively restore vertebral height, reset the invaded vertebral block, and selectively perform limited decompression and posterolateral bone grafting to ensure the completeness of intravertebral decompression and stability, which is one of the effective methods to treat unstable fresh thoracolumbar burst vertebral fracture.