ObjectiveTo investigate the feasibility of the free descending branch of lateral circumflex femoral artery perforator tissue flap (fascia flap plus skin flap) to repair large soft tissue defects of the extremities and its impact on the donor site. MethodsBetween January 2013 and February 2015, 9 cases of large tissue defects of the extremities were repaired with the free descending branch of lateral circumflex femoral artery perforator tissue flap. There were 8 males and 1 female, aged from 13 to 56 years (median, 36 years). The causes included traffic accident injury in 6 cases and crushing injury by heavy object in 3 cases. Soft tissue defect located at the lower limbs in 7 cases and at the upper limbs in 2 cases, including 2 cases of simple tendon exposure, 2 cases of simple bone exposure, and 5 cases of tendon and bone exposure. After debridement, the soft tissue defect area ranged from 13 cm×7 cm to 20 cm×18 cm. The tissue flaps ranged from 14 cm×8 cm to 23 cm×19 cm. The donor site was directly sutured, scalp graft was used to cover the fascia flap. ResultsAfter operation, partial necrosis of the skin grafting on the fascia flap occurred in 2 cases and healed after dressing change. Arterial crisis occurred in 1 case and the flap survived after anastomosis. The other tissue flaps survived and wounds healed by first intention. The skin grafting healed by first intention in 7 cases, by second intention in 2 cases. The patients were followed up 4-24 months (mean, 10 months). The appearance and function of the tissue flaps were satisfactory, only linear scar was observed at the donor site, which had less damage and no effect on walking. ConclusionFree descending branch of lateral circumflex femoral artery perforator tissue flap can repair large soft tissue defect of the extremities. The donor site can be sutured directly, which reduces damage to donor site and is accord with the principle of plastic surgery.
ObjectiveTo investigate the application and effectiveness of split-thickness scalp graft and temporoparietal fascia flap in the low hairline auricle reconstruction in microtia patients. MethodsBetween July 2010 and April 2015, 23 patients with low hairline microtia (23 ears) underwent low hairline auricle reconstruction. There were 16 males and 7 females with the mean age of 12 years (range, 6-34 years). The left ear was involved in 10 cases, and the right ear in 13 cases. There were 18 cases of lobule-type, 4 cases of concha-type, and 1 case of small conchatype. Referring to Nagata's two-stage auricular reconstruction method, the first stage operation included fabrication and grafting of autogenous costal cartilage framework; after 6 months, second stage operation of depilation and formation of cranioauricular sulcus was performed. The split-thickness scalp was taken from the part of the reconstructive ear above hairline. The hair follicles and subcutaneous tissue layers in hair area were cut off during operation. The area of depilation and auriculocephalic sulcus were covered with temporoparietal fascia flap. Then split-thickness skin was implanted on the surface of temporoparieta fascia flap. ResultsAll operations were successfully completed. Healing of incision by first intention was obtained, without related complication. The patients were followed up 6-20 months (mean, 12 months). The reconstructed ear had satisfactory appearance and had no hair growth. ConclusionThe application of splitthickness scalp graft and temporoparietal fascia flap in low hairline auricle reconstruction in microtia patients can achieve satisfactory results.
OBJECTIVE The correction of ectropion of lower lid and severe infra-orbital soft tissue depression is very difficult. Former methods included simple skin graft, tubed graft, transfer of local skin flap and so on. These methods had some disadvantages, such as not enough tissue to fill the depression, too much damage done to the donor area and operation in stages required. METHODS After investigation on the anatomy of temporal region, designed the following method. Combined transfer of the galea aponeurotica and temporal fascia was used to repair severe infra-orbital soft tissue depression and ectropion of lower lid in 6 cases. RESULTS It was discovered that the combined transfer of the galea aponeurotica and temporal fascia was rich in blood circulation because they received blood supply from parietal branch of superficial temporal artery and could be transferred to a distance as far as 15-18 cm. The skin graft used to cover the fascia usually resulted in good survival. This technique was used in 6 cases with good success. CONCLUSION This method had some merits such as the tissue flap had good blood supply, little damage done to the donor area, good correction of the severe depression, good appearance following correction, operation done under local anesthesia and completed in one-stage operation.
Objective To evaluate a modified anterolateral thigh fascial flap designed for the treatment of the soft tissue defects in the forearmsand hands. Methods From September 2000 to December 2003, a modified anterolateral thigh fascial flap combined with the intermediate split thickness skin graft was applied to the treatment of 13 patients with the soft tissue defects in the forearms or the hands. There were 8 males and 5 females, aged 19-43 years (average, 27.6 years). Three patients had a mangled injury, 4 had a belt injury, and 6 had a crush injury; 6 patients had their tissue defects on the palm side of the forearm, 6 had their tissue defects on the dorsal side of thehand, and 1 had the defect in the index finger (dorsal side of the hand). The tissue defects ranged in size from 17.5 cm×7.7 cm to 4.6 cm×3.4 cm.In addition, 4 of the patients had an accompanying fracture in the forearm or the hand,and the remaining 9 had an extenor tendon injury. All the patients underwent emergency debridement and reposition with an internal fixation for the fracture; 3-5 days after the repair of the injured nerves, muscle tendons and blood vessels, the tissue defects were repaired with the anterolateral thigh fascial flap combined with the intermediate split thickness skin graft. Results No vascular crisis developed after operation. All the flaps survived except one flap that developed a parial skin necrosis (2.0 cm ×1.0 cm) in the hand, but the skin survived after another skingrafting. The follow-up for 3-12 months revealed that all the flaps and skin grafts had a good appearance with no contracture of the skin. According to the evaluation criteria for the upper limbs recommended by the Hand Society of Chinese Medical Association, 9 patients had an excellent result, 2 had a good result, 1 had a fair result, and 1 had a poor result, with a good/excellence rate of 85%. Conclusion The modified anterolateral thigh fascial flap combined with the skin graft is one of the best methods for the treatment of the soft tissue defects in the forearms and the hands. This method has advantages of no requirement for a further flap reconstruction, no skin scar or contracture in the future, easy management for the donor site, and less wound formation.
Objective To evaluate the effect of internal fixation on the stability of pedicled fascial flap and the osteogenesis of exceed critical size defect (ECSD) of bone so as to provide theory for the clinical application by the radiography and histology observation. Methods The ECSD model of the right ulnar midshaft bone and periosteum defect of 1 cm in length was established in 32 New Zealand white rabbits (aged 4-5 months), which were divided into group A and group B randomly (16 rabbits in each group). The composite tissue engineered bone was prepared by seeding autologous red bone marrow (ARBM) on osteoinductive absorbing material (OAM) containing bone morphogenetic protein and was used repair bone defect. A pedicled fascial flap being close to the bone defect area was prepared to wrap the bone defect in group A (control group). Titanium miniplate internal fixation was used after defect was repair with composite tissue engineered bone and pedicled fascial flap in group B (experimental group). At 2, 4, 6, and 8 weeks, the X-ray films examination, morphology observation, and histology examination were performed; and the imaging 4-score scoring method and the bone morphometry analysis was carried out. Results All rabbits survived at the end of experiment. By X-ray film observation, group B was superior to group A in the bone texture, the space between the bone ends, the radiographic changes of material absorption and degradation, osteogenesis, diaphysis structure formation, medullary cavity recanalization. The radiographic scores of group B were significantly higher than those of group A at different time points after operation (P lt; 0.05). By morphology and histology observation, group B was superior to group A in fascial flap stability, tissue engineered bone absorption and substitution rate, external callus formation, the quantity and distribution area of new cartilage cells and mature bone cells, and bone formation such as bone trabecula construction, mature lamellar bone formation, and marrow cavity recanalization. The quantitative ratio of bone morphometry analysis in the repair area of group B were significantly larger than those of group A at different time points after operation (P lt; 0.05). Conclusion The stability of the membrane structure and the bone defect area can be improved after the internal fixation, which can accelerate bone regeneration rate of the tissue engineered bone, shorten period of bone defect repair, and improve the bone quality.