Objective To study the expression of receptor of advanced glycation end products (RAGE) in autogenous vein graft of streptozotocin induced diabetic rats and the inhibitory effects of aminoguanidine on intimal hyperplasia. Methods Sixty male Sprague-Dawley rats were randomly divided into three groups: aminoguanidine group, distilled water group and control group. Autogenous vein graft models were established in all groups. Streptozotocin was injected into abdominal cavity to induce diabetes in both aminoguanidine group and distilled water group, and they were intragastric administrated with aminoguanidine or distilled water, respectively before and after transplantation. Specimens were collected from autogenous vein graft 7 days and 14 days after surgery to undergo histological examination. At the same time, the level of serum advanced glycation end products (AGE) was tested. Western blotting and immunohistochemistry were used to detect the protein expression of RAGE and NF-κB p65. RAGE and NF-κB p65 mRNA were measured by reverse transcription-PCR. Results The mRNA and protein expressions of RAGE, NF-κB p65, the level of serum AGE and the intimal thickness of vein graft in distilled water group increased in comparison with those in control group 7 days and 14 days after surgery (P<0.05). The level of serum AGE, mRNA and protein expressions of NF-κB p65 and the intimal thickness of vein graft in aminoguanidine group were lower than those in distilled water group (P<0.05), and showed no significant difference compared with control group (P>0.05). Conclusion The over-expression of RAGE in vein graft activats NF-κB in streptozotocin-induced diabetic rat, which has a close relation with intimal hyperplasia. Aminoguanidine can block the binding of AGE and RAGE by inhibiting the production of AGE, which will prevent intimal hyperplasia of vein graft.
ObjectiveTo observe the protective effect of polypyrimidine bundle-binding protein-related splicing factor (PSF) over-expression on RPE cell injury induced by advanced glycation end products (AGEs).MethodsThe human RPE cells cultured in vitro were divided into three groups: normal control group (N group), blank control group (N + AGEs group), empty vector control group (Vec + AGEs group), and PSF high expression group (PSF + AGEs). group). RPE cells in N group were routinely cultured; RPE cells in N + AGEs group were only transfected but did not introduce any exogenous genes combined with AGEs induction; Vec +AGEs group and PSF + AGEs group were transfected with pcDNA The empty vector or pcDNA-PSF eukaryotic expression plasmid was introduced into RPE cells and induced by AGEs. Except the N group, the other 3 groups of cells were transfected accordingly, and were stimulated with 150 μg/ml AGEs for 72 h after 24 h. HE staining and Hoechst 33258 staining were used to observe the effect of high PSF expression on the morphological changes of RPE cells; ROS level detection was used to analyze the effect of PSF high expression on the ROS expression of RPE cells induced by AGEs; MTT colorimetric method was used to detect the high PSF expression Effects on the viability of RPE cells; Western blot was used to detect the effects of different time and dose of PSF on the expression of heme oxygenase 1 (HO-1).ResultsHE staining and Hoechst 33258 staining observation showed that the cells in group N were full in shape, the nucleus was round, the cytoplasm was rich, and the staining was uniform; the cells in N + AGEs group and Vec + AGEs group were reduced in size, the eosinophilic staining was enhanced, and the nucleus was densely densely stained. Pyrolysis and even fragmentation; the morphology of cells in the PSF + AGEs group was still full, the cytoplasm staining was more uniform, and the nucleus staining was uniform. The results of MTT colorimetry showed that high expression of PSF can effectively improve the viability of RPE cells, but this effect can be effectively antagonized by ZnPP, and the difference is statistically significant (F=33.26, P<0.05). DCFH-DA test results showed that compared with the N + AGEs group and Vec + AGEs group, the ROS production in PSF + AGEs group decreased, the difference was statistically significant (F=11.94, P<0.05). Western blot analysis showed that PSF protein up-regulated HO-1 expression in a time- and dose-dependent manner. The relative expression level of HO-1 at 24, 48, and 72 h after PSF protein was significantly higher than that at 0 h, and the difference was statistically significant (F=164.91, P<0.05). The relative expression level of HO-1 under the action of 0.1, 0.5, 1.0, 1.5, and 2.0 μg PSF protein was significantly higher than 0.0 μg, and the difference was statistically significant (F=104.82, P<0.05).ConclusionPSF may inhibit the production of ROS by up-regulating the expression of HO-1, thus protecting the RPE cells induced by AGEs.
Objective To investigate the effect of advanced glycation end products (AGEs) on the catalase activity and the levels of malondialdehyde in cultured bovine retinal capillary pericytes (BRPs), and to investigate the relationship between oxidative stress and diabetic retinopathy. Methods Cultured BRPs were exposed to AGEs (0, 8, 32, 125, 500, 2 000 μg/ml) for four days. Activity and the levels of catalase and malondialdehyde in cultured BRPs were examined by spectrophotometry. Results AGEs decreased the catalase activity, whereas increased the levels of malondialdehyde of cultured BRPs in a dose-dependent manner (r=-0.714, r=0.748, P<0.01).There were significant differences between BRPs cultured in 32 μg/ml AGEs and in control group (P<0.01), while no significant differences between BRPs cultured in non-glycated bovine serum albumin and absence of bovine serum albumin were found. Conclusion Oxidative stress may be one of the reasons why the pericyte disappears in diabetic retinopathy. (Chin J Ocul Fundus Dis, 2002, 18: 143-145)
ObjectiveTo observe the effect of polypyramidine tract binding protein-associated splicing factor (PSF) towards advanced glycation end products (AGEs) induced the apoptosis of Müller cells in vitro.MethodsExperimental study. Müller cells were cultured and divided into groups according to the project design, plasmid enhanced green fluorescent protein-PSF were transfected into the cells to achieve the overexpression of PSF Müller cells in vitro, then cells were exposed to AGEs and the Morphological changes were observed by HE staining and Hoechst 33258 staining while the survival rate of cells were detected by MTT assay. The effects of PSF on AGEs-induced Müller apoptosis was measured by Cell Death Detection ELISA kit. Meanwhile, 2′,7′-dichlorofluorescin diacetate staining was performed to monitor the protective effects of PSF on AGEs-induced Müller cells ROS.ResultsThe morphology of cells in normal group was full and the cytoplasm staining was uniform. In N+AGEs group and Vec+AGEs group, cell volume decreased, cytoplasm was dense and concentrated, and eosinophilic staining was enhanced. The cell morphology of PSF+AGEs group was still full, with uniform cytoplasm staining and uniform nucleus staining. The viability of N+AGEs group, Vec+AGEs group and PSF+AGEs group were 0.42±0.11, 0.35±0.12 and 0.68±0.12. The apoptosis values were 1.08±0.16, 0.96±0.20 and 0.44±0.08. The intracellular ROS levels were 28 833.67±3 550.06, 28 356.67±4 854.81, 186 163.00±382.54. Compared with N+AGEs group and Vec+AGEs group, the cell viability of PSF+AGEs group was significantly improved (F=20.65, P=0.000), cell apoptosis value (F=43.43, P=0.000) and intracellular ROS level (F=18.86, P=0.000).ConclusionPSF overexpression play a protective role in AGEs-induced apoptosis by inhibiting the production of ROS in Müller cells.
Objective To observe the value of serum soluble receptor of advanced glycation endproducts (sRAGE) combined with lung function and high resolution lung CT (HRCT) in predicting the risk of chronic obstructive pulmonary disease (COPD) developing non-small cell lung cancer (NSCLC). Methods From January 2019 to June 2021, 140 patients with COPD combined with NSCLC, 137 patients with COPD, and 133 patients with NSCLC were enrolled in the study from the People's Hospital of Ningxia Hui Autonomous Region. General data, clinical symptoms, pulmonary function indexes and HRCT emphysema indexes (EI) were collected. Serum sRAGE levels of these patients were measured by enzyme linked immunosorbent assay. Clinical characteristics of patients with COPD complicated with NSCLC were analyzed. Serum sRAGE, lung function and lung HRCT were combined to evaluate the correlation between the degree of emphysema and the occurrence of NSCLC in COPD, and receiver operator characteristic (ROC) curve analysis was performed for diagnostic efficiency. Results Compared with NSCLC group, COPD combined with NSCLC group had higher proportion of male patients, higher proportion of elderly patients, higher smoking index, and higher proportion of squamous cell carcinoma (P<0.05). FEV1 and FEV1%pred in COPD combined with NSCLC group were significantly lower than those in COPD group and NSCLC group. The Goddard score and EI values of emphysema were significantly increased (P<0.05). Serum sRAGE was significantly lower than that of COPD group and NSCLC group (P<0.05). Serum sRAGE level was positively correlated with FEV1%pred (r=0.366, P<0.001) and FEV1/FVC (r=0.419, P<0.001), and negatively correlated with Goddard score (r=–0.710, P=0.001) and EI value (r=–0.515, P<0.001). Binary multi-factor logistic regression analysis showed that age, smoking index, EI, Goddard score, RV/TLC were positively correlated with the risk of COPD developing NSCLC, while FEV1%pred, FVC, FEV1/FVC and serum sRAGE were negatively correlated with the risk of COPD developing NSCLC. ROC curve results showed that the area under the curve (AUC) of single diagnosis of sRAGE was 0.990, and the optimal cut-off value of 391.98 pg/mL with sensitivity of 93.3% and specificity of 89.7%. The AUC of sRAGE combined with age, smoking index, EI, Goddard score, FEV1%pred, FVC, FEV1/FVC, RV/TLC was 1.000 with sensitivity of 96.7%, specificity of 96.6%, and Yoden index of 0.933. Conclusion The combination of serum sRAGE, lung function and HRCT emphysema score can improve prediction of NSCLC occurrence in COPD.
ObjectiveTo observe the protective effect of tanshinone Ⅱ A on the mouse liver ischemia-reperfusion injury (IRI) model and preliminarily explore its mechanism of alleviating liver injury.MethodsThe IRI mouse model was established after the pre-treating with tanshinone Ⅱ A. Then, the serum and liver tissue of mice were collected to detect the changes of liver function, histopathology, liver cell apoptosis, and inflammatory factors. In addition, the protein expression levels of high mobility group box 1 (HMGB1), advanced glycosylation end-product specific receptor (RAGE), and Toll like receptor 4 (TLR4) in the liver tissues were detected by the Western blot method.ResultsAll data were analyzed by the homogeneity of variance test. The results of factorial design showed that the levels of ALT and AST in the serum, the pathological score and apoptosis index, the inflammatory response, as well as the expressions of HMGB1, TLR4 and RAGE proteins in the liver tissues were decreased significantly (P<0.05) in the sham operatation plus tanshinone Ⅱ A mice, which were increased significantly (P<0.05) in the IRI mice, which were antagonized synergistically by the tanshinone ⅡA and IRI (P<0.05).ConclusionsTanshinone ⅡA could reduce the liver IRI and inflammatory response in mouse. These effects might be related to the down-regulations of TLR4, HMGB1, and RAGE expressions.
Obiective lt;brgt;To investigate the change of the activity of proliferation in cultivated Muuml;ller cells treated by advanced glycation endoproducts (AGEs), and the effect of these changes on expression of occludin in bovine retinal vascular endothelial cells (BREC). lt;brgt;Methods lt;brgt;The cultivated Muuml;ller cells were devided into normal growth group and cultured with AGEs group. The cultured BREC were devided into 4 groups:group 1, without any medium; group 2, with normal growth Muuml;ller cell medium (MCM); group 3,MCM treated by AGEs; group 4, without cell as the control. Enzyme-linked immuno sorbent assay was used to detect the content of occludin in the medium in the 4 groups. lt;brgt;Results lt;brgt;The content of expression of occludin was the most in group 2, less in group 1, and the least in group 3. lt;brgt;Conclusion lt;brgt;AGEs may promote the abnormal proliferation of Muuml;ller cells and inhibit the expression of occludin in BREC. lt;brgt;(Chin J Ocul Fundus Dis, 2006, 22: 28-30)