Objective To investigate the protective effects of antitumor necrosis factor-α antibody (TNF-αAb) on lung injury after cardiopulmonary bypass (CPB) and their mechanisms. Methods Forty healthy New Zealand white rabbits,weighting 2.0-2.5 kg,male or female,were randomly divided into 4 groups with 10 rabbits in each group. In groupⅠ,the rabbits received CPB and pulmonary arterial perfusion. In group Ⅱ,the rabbits received CPB and pulmonary arterial perfusion with TNF-αAb. In group Ⅲ,the rabbits received CPB only. In group Ⅳ,the rabbits only received sham surgery. Neutrophils count,TNF-α and malondialdehyde (MDA) concentrations of the blood samples from the left and right atrium as well as oxygenation index were examined before and after CPB in the 4 groups. Pathological and ultrastructural changes of the lung tissues were observed under light and electron microscopes. Lung water content,TNF-α mRNA and apoptoticindex of the lung tissues were measured at different time points. Results Compared with group Ⅳ,after CPB,the rabbitsin group Ⅰ to group Ⅲ showed significantly higher blood levels of neutrophils count,TNF-α and MDA(P<0.05),higherTNF-α mRNA expression,apoptosis index and water content of the lung tissues (P<0.05),and significantly lower oxyg-enation index (P<0.05) as well as considerable pathomorphological changes in the lung tissues. Compared with group Ⅱ,after CPB,the rabbits in groups Ⅰ and Ⅲ had significantly higher blood concentrations of TNF-α (5 minutes after aortic declamping,220.43±16.44 pg/ml vs.185.27±11.78 pg/ml,P<0.05;249.99±14.09 pg/ml vs.185.27±11.78 pg/ml,P<0.05),significantly higher apoptosis index (at the time of CPB termination,60.7‰±13.09‰ vs. 37.9‰±7.78‰,P<0.05;59.6‰±7.74‰ vs. 37.9‰±7.78‰,P<0.05),significantly higher blood levels of neutrophils count and MDA (P<0.05),significantly higher TNF-α mRNA expression and water content of the lung tissues (P<0.05),and significantly loweroxygenation index (P<0.05) as well as considerable pathomorphological changes in the lung tissues. Compared with groupⅠ,rabbits in group Ⅲ had significantly higher above parameters (P<0.05) but lower oxygenation index (P<0.05) only at 30 minutes after the start of CPB. Conclusion Pulmonary artery perfusion with TNF-αAb can significantly attenuate inflammatory lung injury and apoptosis of the lung tissues during CPB.
Objective To investigate the possibility of creation of tissue engineered heart valve leaflets in vitro . Methods Aorta were obtained from 9 hybrid young pigs. The endothelial cell, fibroblast and smooth muscle cells were isolated and cultured to get enough cell. The expanded fibroblast, smooth muscle cell,and endothelial cells were seeded on the polymers sequentially. The cell polymer constructs were sent for scanning electron microscopy(SEM) examination after cultured for 7, 14, and 28 days. Histological examination were performed after the cell polymer constructs cultured for 28 days. Results SEM showed that the number of cells on the polymers increased as the culture time prolonged, with the formation of matrix. After 28 days, there were a great number of cells and large amount of matrix on the scaffolds. The confluent cell had covered a large area of the polymers. Hematoxylin and eosin(HE) stain showed large amount of cells attached to the polymers. Conclusion With the viability of the cultured cellular scaffolds,it is possible to create tissue engineered heart valve leaflets in vitro.
OBJECTIVE: From the point of view of material science, the methods of tissue repair and defect reconstruct were discussed, including mesenchymal stem cells (MSCs), growth factors, gene therapy and tissue engineered tissue. METHODS: The advances in tissue engineering technologies were introduced based on the recent literature. RESULTS: Tissue engineering should solve the design and preparation of molecular scaffold, tissue vascularization and dynamic culture of cell on the scaffolds in vitro. CONCLUSION: Biomaterials play an important role in the tissue engineering. They can be used as the matrices of MSCs, the delivery carrier of growth factor, the culture scaffold of cell in bioreactors and delivery carrier of gene encoding growth factors.
【摘要】 目的 观察不同种培养基中重组人色素上皮衍生因子(rPEDF)融合蛋白的表达。 方法 将前期研究已构建的pET28aPEDF原核表达重组体转化E.coli BL21大肠杆菌表达宿主菌,酶切鉴定阳性菌落后,分别在M9和LB培养基中用异丙基βD硫代半乳糖(IPTG,IsopropylbetaDthiogalactoside)诱导表达,SDSPAGE电泳检测表达的PEDF蛋白, 美国ImagePro Plus 分析系统进行蛋白定量分析。结果 LB和M9培养基中均获得相对分子质量约54×103的rPEDF融合蛋白。但LB培养基获得的是rPEDF融合蛋白的包涵体,目的蛋白占总蛋白含量为21046%,M9培养基获得的是可溶性的rPEDF的融合蛋白,目的蛋白占总蛋白含量的1231%。结论 不同种培养基中均有rPEDF 融合蛋白的表达。【Abstract】 Objective To observe the express of recombinant pigment epithelial derivative facto (rPEDF) in the different medium. Methods The pET28aPEDF was transformed into E.coli BL21. After the colonies were positive identification which were induced by IsopropylbetaDthiogalactoside in medium M9 and LB. The PEDF protein were detected by SDSPAGE and analyzed by American ImagePro Plus system. Results LB and M9 medium obtained the relative molecular mass about 54×103 rPEDF fusion protein. But LB medium obtained the inclusion bodys of rPEDF fusion protein,the purpose protein account for 21.046%;LB medium obtained the soluble rPEDF fusion protein,the purpose protein account for 12.31%. Conclusion The rPEDF protein was expressed in the different medium.
Objective To investigate the effect of CO2 pneumoperitoneum on the tumor cell port site implantation in laparoscopic surgery. Methods Male SpraqueDawley rats were intraperitoneally injected with gastric cancer cells (cell line SGC-7901). Continuous CO2 pneumo of 15 mm Hg or 30 mm Hg were established for 5 mins, 60 mins, 120 mins and 180 mins with the injection of different concentrations of tumor cells (104/ml, 106/ml respectively). Several samples of peritoneal washing served as positive control. All collecting dishes were incubated at 37℃ with 5% CO2 concentration for one week and then examined for the presence of tumor cell under microscope. Results After one week of incubation, some of the dishes with continuous flow of CO2 gas (5 L/min) at pneumo 30 mm Hg for 60 mins or longer demonstrated tumor growth, and all peritoneal washing samples showed tumor growth, while other dishes showed negative. Conclusion The research suggests that gastric cancer cells can cause port site implantation and the concentration of tumor cells, pneumoperitoneum pressure and duration may affect the occurrence of port site implantation. It may help to find a suitable way to prevent the port site implantation in operations.
Objective To study the vascularization of the compositeof bone morphogenetic protein 2 (BMP-2) gene transfected marrow mesenchymal stem cells (MSCs) and biodegradable scaffolds in repairing bone defect. Methods Adenovirus vector carrying BMP-2 (Ad-BMP-2) gene transfected MSCs and gene modified tissue engineered bone was constructed. The 1.5 cm radial defect models were made on 60 rabbits, which were evenly divided into 4 groups randomly(n=15, 30 sides). Different materials were used in 4 groups: Ad-BMP-2 transfected MSCs plus PLA/PCL (group A), AdLacz transfected MSCs plus PLA/PCL (group B), MSCs plus PLA/PCL (group C) and only PLA/PCL scaffolds (group D). The X-ray, capillary vessel ink infusion, histology, TEM, VEGF expression and microvacular density counting(MVD) were made 4, 8, and 12 weeks after operation. Results In group A after 4 weeks, foliated formed bones image was observed in the transplanted bones, new vessels grew into the bones, the pores of scaffolds were filled with cartilage callus, osteoblasts with active function grew around the microvessels, and VEGF expression and the number of microvessels were significantly superior to those of other groups, showing statistically significant difference (Plt;0.01); after 8 weeks, increasingly more new bones grew in the transplanted bones, microvessels distended and connected with each other, cartilage callus changed into trabecular bones; after 12 weeks, lamellar bone became successive, marrow cavity recanalized, microvessels showed orderly longitudinal arrangement. In groups B and C, the capability of bone formation was weak, the regeneration of blood vessels was slow, after 12 weeks, defects were mostly repaired, microvessels grew among the new trabecular bones. In group D, few new vessels were observed at each time, after 12 weeks, broken ends became hardened, the defectedarea was filled with fibrous tissue. Conclusion BMP-2 gene therapy, by -upregulating VEGF expression, indirectly induces vascularization ofgrafts,promotes the living of seed cells, and thus accelerates new bone formation.
Objective To investigate the preventive and therapeutic effects and the mechanisms of pyrrol idine dithiocarbamate (PDTC) on the atrophy of denervated skeletal muscle. Methods Thirty adult Wistar rats of either gender, weighing (200 ± 10) g were randomly divided into 3 groups: group A (n=6, control group), group B (n=12, denervation group), and group C (n=12, PDTC treatment group). The sciatic nerves of the rats were only exposed without cutting off in group A, and the rats were made denervated gastrocnemius models in groups B and C. PDTC of 100 mg/(kg•d) was injected peritoneally in group C and an intraperitoneal injection of the same amount normal sal ine was given in group B. After 14 and 28 days, the gastrocnemius was harvested to measure the ratio of muscle wet weight; the levels of nuclear factor of κB (NF-κB)p65 protein and the opening of the mitochondrial permeabil ity transition pore (MPTP) in the gastrocnemius were detectedrespectively by Western blot and laser confocal scanning microscope; and the apoptotic cells in atrophic muscle were measured with TUNEL. Results The ratio of muscle wet weight in group A was 1.039 ± 0.115, and it significantly decreased in groups B and C (P lt; 0.05); after 14 and 28 days of operation, the ratio of muscle wet weight in group C significantly increased when compared with those in group B (P lt; 0.05). The expression of NF-κB p65 protein in group A was 0.224 ± 0.041; the expressions of NF-κB p65 in groups B and C significantly increased when compared with that in group A (P lt; 0.05); however, the expression of NF-κB p65 in group C was significantly lower than that in group B (P lt; 0.05). The MPTP fluorescence intensity in group A was 31.582 ± 1.754; the MPTP fluorescence intensity was significantly lower in groups B and C than in group A (P lt; 0.05), and the MPTP fluorescence intensity in group C was significantly higher than that in group B (P lt; 0.05). The rate of apoptosis in group A was 4.542% ± 0.722%; after 14 and 28 days of operation, the rates of apoptosis significantly increased when compared groups B and C with group A, and signiticantly decreased when compared group C with group B (P lt; 0.05). Conclusion PDTC can retard denervated skeletal muscle atrophy, and the effect may have a relationship with its inhibition on NF-κB, the opening of the MPTP, and the ratio of apoptosis.
Abstract To observe the effect of fibroblast growth factor (FGF) on wound healing, 50 mice were divided into 5 groups. On the back of every mouse, 2 wounds were made by operative cuts, one for experiment and the other for control. The wounds of the experimental group were covered with 0.5ml FGF solution (contented FGF 300 μg/ml, heparin 100 μg/ml), whereas the wounds of the control group were covered with 0.5ml 0.9% NaCl solution. All of the wounds were dressed by sterilized gauze, and received the same treatment once a day. After 1,3,5,7,10 days, the mice in every group were sacrificed and the tissues of the wounds were collected and prepared for microscopic examination. The results showed that the capillaries and fibroblasts in the experimental group were markedly increased and reached the peak 2~3 days earlier than those in the control group. It was suggested that FGF promoted the formation of granulation tissue and the wound healing.
Objective To explore the feasibility of allogeneic marrow stromal stem cells(MSCs) as seed cells to construct tissue engineered bone bydetecting the expressions of interleukin 2(IL-2) and IL-2 receptor in rhesus monkeys after implanting these tissue engineered bones.Methods Engineered bones were constructed with osteoblasts which derived from allogeneic MSCs and bio-derived materials in vitro, and then were implanted to bridge 2.5 cm segmental bone defects of left radius in 15 rhesus monkeys as experimental group, bioderived materials only were implanted to bridge same size defects of right radius as control group. Every 3 monkeys were sacrificed in the 1st, the 2nd, the 3rd, the 6th andthe 12th weeks postoperatively and the expressions of IL-2 and IL-2 receptor in blood and graft samples were detected quantitatively by enzymelinked immuneosorbent assay (ELISA).Results There was no significant difference in the contents of IL-2 and its receptor between 2 groups(P>0.05). The contents ofIL-2 and its receptor increased from the 2nd week and maintained high level from the 2nd to the 6th week, but decreased after 6 weeks.ConclusionTissue engineered bones constructed with allogeneic MSCs and bio-derived materials show low immunogenicity. Allogeneic MSCs may be used as seed cells to construct tissue engineered bone.