Objective To investigate the management of the soft tissue defect after the Achilles tendon repair. Methods From April 1996 to April 2006, 24 patients(17 males, 7 females; aged 16-59 years), who suffered from postoperative Achilles tendon exposure caused by local soft-tissue necrosis after the Achilles tendon repair, were treated and evaluated. Of the 24patients, 8 had an original open injury (machinecrush injury in 2 patients, heavy-object press injury in 3, motorcycle wheel crush injury in 3) and 16 patients had a closed injury (sports injury). In their treatment, the transferof the sural neurovascular flap was performed on 8 patients and the transfer ofthe saphenous neurovascular flap was performed on 3 patients. The secondary Achilles tendon repair was performed on 13 patients before the neurovascular flap transfer was performed. The time between the injury and the operation was 9-76 days, and the time between the Achilles tendon expousure and the operation was 3-65 days. Results All the flaps survived and the Achilles tendon exposure was well covered by the flaps of good texture. Eighteen patients followed up for 6 months to 24 months had no flap complication, and the two point discrimination of the flaps was 12-20 mm. The AOFASAnkleHindfoot Scale assessment revealed that 8 patients had an excellent result, 6 had a good result, 3 had a fair result, and just 1 had a poor result, with theexcellent and good results accounting for 77.8%. Sixteen patients (89%) were able toperform a tip-toe stance on their operative sides, and only 3 of them complained a loss of plantarflexion strength. However, 2 patients still could not perform the tip-toe stance. Conclusion The Achilles tendon repair, ifnot well performed, can result in the local soft-tissue necrosis and the subsequent Achilles tendon exposure. If those complications occur, the neurovascular flap transfer should be performed as soon as possible; if necessary, the secondary Achilles tendon repair should be performed, too.
Objective To investigate a best method of obtaining the sural neurofasciocutaneous flap by observing the models of different pedicles based sural neurofasciocutaneous flaps in rabbits and the effect of different pedicles on the survival of the flaps. Methods Forty adult New Zealand rabbits (male or female, weighing 2.5-3.0 kg) were randomly divided into 4 groups (10 rabbits in each). The flaps of 7 cm × 1 cm were designed at the lateral hind legs, and the pedicle was 0.5 cmin length. In group A, the flaps were elevated based on a single perforator pedicle; in group B, the flaps were elevated based on fascia pedicle; in group C, the flaps were elevated based on perforator-plus fascia pedicle; and in group D, the flaps were elevated and sutured in situ. At 7 days after operation, the flap survival rate was recorded, and the blood flow in the center of the flap was monitored by laser doppler flowmetry. The perfusion unit (PU) was measured. Results After operation, the flaps had no obvious swell ing, and the flaps had good color at the proximal end, but pale at the distal end in groups A and B. Obvious swell ing was observed with pale color at the distal flaps in group C, but swell ing decreased gradually. However, the skin color became dark gradually in group D after operation. The flap survival rates were 74.0% ± 2.7%, 60.0% ± 2.5%, 75.0% ± 3.5%, and 0 in groups A, B, C, and D respectively after 7 days of operation. The PU values were 83.39 ± 4.25, 28.96 ± 13.49, 81.85 ± 5.93, and 8.10 ± 3.36 in groups A, B, C, and D respectively. There were significant differences in flap survival rates and PU values between groups A, B, C and group D (P lt; 0.05). Significant differences were found between groups A, C and group B (P lt; 0.05), but no significant difference between group A and group C (P gt; 0.05). Conclusion The sural neurofasciocutaneous flap based on a single perforator pedicle has a rel iable blood supply and enough venous drainage, which is one of the best methods to obtain the sural neurofasciocutaneous flap.
【Abstract】 Objective To investigate the operative techniques and cl inical results of repairing the soft tissue defectsof forearm and hand with free peroneal perforator-based sural neurofasciocutaneous flap. Methods From May 2006 toJanuary 2007, 6 patients including 5 males and 1 female were treated. Their ages ranged from 22 years to 51 years. They were injured by motor vehicle accidents (2 cases), or crushed by machines (4 cases), with skin defect of hand in 1 case, skin defect of hand associated with tendon injuries and metacarpal fractures in 2 cases, skin defect of forearm in 2 cases, and forearm skin defects with fractures of radius and ulna in 1 case. The areas of soft tissue defect ranged from 16 cm × 7 cm to 24 cm × 10 cm. The debridement and the primary treatment to tendons or bones were performed on emergency. And free flaps were transplanted when the wound areas were stable at 4 to 7 days after the emergent treatment. During the operation, the flaps were designed along the axis of the sural nerve nutrient vessels according to the shape and size of the soft tissue defects, with the peroneal perforator above the lateral malleolus as the pedicle and along with a part of the peroneal artery for vascula anastomosis. Then the flaps were harvested and transferred to the reci pient sites with the peroneal vartey anastomosed to the radial (or ulnar) artery and the peroneal veins to one of the radial (or ulnar) veins and the cephal ic vein, respectively. The flap size ranged from 18 cm × 8 cm to 25 cm × 12 cm. The donor areas were closed by skin grafts. Results The 5 flaps survived after the surgery. Partial inadequate venous return and distal superficial necrosis happened in only 1 case, which also got secondary heal ing by changing dressing and anti-infective therapy. The donor sites reached primary heal ing completely. The followed-up in all the patients for 6 to 13 months revealed that the appearance and function of the flaps were all satisfactory, and no influence on ambulation of donor site was found. Conclusion Peroneal perforator-based sural neurofasciocutaneous flap has the advantages of favourable appearance, constant vascular pedicle, rel iable blood supply, large size of elevation and minor influence on the donor site. And the free transfer of this flap is an ideal procedure to repair the large soft tissue defects of forearm and hand.
Objective To provide the anatomical basis for posterior femoral neurocutaneous vascular flap pedicled with direct popliteal artery perforator. Methods A total of 30 embalmed lower limbs of adult cadavers perfused with red latex were dissected and measured to observe the course and distribution of posterior femoral cutaneous nerve (PFCN), and the anastomoses between direct popliteal artery perforator and nutrient vessels of PFCN. Mimic operation was performed on 1 side of fresh specimen. Results PFCN started from the midpoint of the inferior gluteus maximus edge, and went down along the middle line of posterior thigh region, and the final trunk of PFCN accompanied with small saphenous vein down to the middle line of lower leg. The diameters of PFCN was (3.0 ± 0.6) mm at the inferior gluteus maximus edge, and was (2.0 ± 0.7) mm at the superior fossa poplitea. The nutrient vessels of PFCN were multi-segmental and polyphyletic. The direct popliteal artery perforator which started from popliteal artery directly was constant pierced into deep fascia about 7-11 cm above the knee joint, and its original diameter was (0.8 ± 0.2) mm. The direct popliteal artery perforator had 1-2 accompanying veins, and this perforator artery was the main nutrient vessel of the inferior segment of PFCN. The direct popliteal artery perforator gave off 5-8 small vessels which anastomosed with the 1st-3rd perforator of deep femoral artery, the obturator artery perforator, and the lateral femoral circumflex artery perforators. Then these nutrient vessels formed vascular plexus along PFCN in the middle line of posterior region of thigh. Mimic operation showed that the posterior femoral neurocutaneous vascular flap pedicled with direct poplitea artery perforator could be formed successfully. Conclusion The posterior femoral neurocutaneous vascular flap pedicled with direct popliteal artery perforator has constant blood supply and can be easily formed to repair defects around knee joint.
Objective To summarize the cl inical experience of repairing soft tissue defect in dorsal pedis with reversed fascia pedicled peroneal perforating branch sural neurofasciocutaneous flap, and to explore surgery matters needingattention and measures to prevent flap necrosis. Methods Between August 2000 and April 2009, 31 patients with soft tissue defects in dorsal pedis were treated with reversed fascia pedicled peroneal perforating branch sural neurofasciocutaneous flaps. There were 23 males and 8 females with a median age of 34 years (range, 3-65 years). Defects were caused by traffic accident in 20 cases, by machine in 2 cases, and by crush in 2 cases. The time from injury to admission was 1-32 days (mean, 15 days). And 6 cases had chronic ulcer or unstable scar excision with disease duration of 6 months to 10 years, and 1 case had squamous carcinoma with disease duration of 5 months. The wounds were located in medial dorsal pedis in 12 cases and lateral dorsal pedis in 19 cases; including 14 wounds near the middle metatarsal and 17 wounds beyond the middle metatarsal (up to the metatarsophalangeal joint in 10 cases). All cases accompanied with bone or tendon exposure. Five cases accompanied with long extensor muscle digits tendon rupture and defect, 1 case accompanied with talus fracture, 1 case accompanied with talus fracture and third metatarsal fracture. The size of the wounds ranged from 6.0 cm × 4.5 cm to 17.0 cm × 10.0 cm. The size of the flaps ranged from 8.0 cm × 5.5 cm to 20.0 cm × 12.0 cm. The donor sites were resurfaced by skin graft. Results Seventeen flaps survived uneventfully, wounds healed by first intention. Distal epidermal or superficial necrosis occurred in 6 flaps at 5-12 daysafter operation, wounds healed by dressing change or skin graft. Distal partial necrosis occurred in 8 flaps (7 in medial dorsal pedis and 1 in lateral dorsal pedis) at 7-14 days after operation, wounds healed by skin graft in 3 cases, by secondary suture in 3 cases, by local flap rotation in 1 case, and by cross leg flap in 1 case. All skin grafts at donor sites survived uneventfully, wounds healed by first intention. Twenty-nine patients were followed up 6-29 months (mean, 19 months). The appearance was sl ightly overstaffed, but wearing shoe function and gait were normal. The texture and color of the flaps in all cases were good. There was no pigmentation and suppuration relapse. There was neither ankle plantar flexion deformity nor hammer toe deformity in 5 cases accompanied with long extensor muscle digits tendon rupture and defect. All fractures healed at 3 months after operation in 2 cases. Conclusion The reversed fascia pedicled peroneal perforating branch sural neurofasciocutaneous flaps are suitable to repair most soft tissue defects in lateral dorsal pedis. When the flaps are used to repair soft tissue defects in medial dorsal pedis, avoiding tension in flaps and fascia pedicles should be noted so as to improve flap survival.
Objective?To investigate the surgical methods and clinical results of repairing soft tissue defects in the thumb with distally-based dorsal thumb neurocutaneous vascular flap.?Methods?From January 2006 to October 2007, 23 patients with soft tissue defect in the thumb were treated, including 20 males and 3 females aged 19-46 years old (average 27.5 years old). The defect was caused by crush injury in 1 case, electric planer accident in 6 cases, incised injury in 8 cases, and avulsion injury in 8 cases. The defect was located on the palmar aspect of the thumb distal phalanx in 3 cases, the dorsal-radial aspect of the thumb distal phalanx in 3 cases, and ulnar or dorsal aspect in 17 cases. The defect size ranged from 3.3 cm × 1.2 cm to 4.2 cm × 1.2 cm. Among them, 18 cases were complicated with distal 1/2 nail bed defect or injury. The time between injury and hospital admission was 1- 72 hours (average 22 hours). During operation, the defect was repaired with distally-based dorsal-radial neurovenocutaneous vascular flap of the thumb in 3 cases and distally-based dorsal-ulnar neurovenocutaneous vascular flap of the thumb in 20 cases. The size of those flaps was 4.0 cm × 1.6 cm-5.0 cm × 3.0 cm. The donor site underwent direct suture or split thickness skin graft repair.?Results?At 10 days after operation, 3 cases suffered from the epidermal necrosis in the distal part of the flap, 2 of them experienced the exfoliation of dark scab 14 days later and the flap survived, and the flap of the rest one survived after dressing change. The other flaps and the skin graft at the donor site all survived uneventfully. The wounds healed by first intention. All the patients were followed up for 10-16 months (average 12.6 months). The flaps were soft in texture and full in appearance. The two-point discrimination value 6 months after operation was 8-10 mm. At 12 months after operation, the growth of the residual fingernail was evident in 18 cases, including 4 cases of curved or hook fingernail. Active flexion and extension of the thumb were normal. The abduction of the first web space reached or surpassed 80 percent of the normal side in 20 cases and was below 80 percent of the normal side in 3 cases. The clinical outcomes were satisfactory in 11 cases, approximately satisfactory in 8 cases, and unsatisfactory in 4 cases according to self-designed evaluation system.?Conclusion?The operative method of repairing the soft tissue defects in the thumb with the distally-based dorsal thumb neurocutaneous vascular flap is simple, stable in anatomy, in line with the principle of proximity, and suitable for repairing thumb tip defect 3 cm in size. It can bring a good postoperative appearance of the thumb and little influence on the hand function.