Ultra-wide-field fluorescein angiography (UWFA) can obtain very wide retinal images (up to 200°), and is a very helpful tool to detect peripheral retinal lesions which cannot be found by other imaging methods. Analyzing the characteristics of the UWFA images may improve our understanding, treatment outcomes and management strategies of ocular fundus diseases. However this technology is still in its premature stage, there is still a lot of work to be done to improve its clinical application and study the characteristics and clinical meanings of these peripheral retinal lesions.
Ultra-wide field fundus autofluorescence (FAF) imaging is a new noninvasive technique with an imaging range of about 200 °. It can detect peripheral retinal lesions that cannot be found in previous FAFs and more objectively reflect intracellular content and distribution of lipofuscin in the retinal pigment epithelium (RPE) and RPE cell metabolic status. The ultra-wide field FAF can find the abnormal autofluorescence (AF) in the peripheral retina of the eyes of age-related macular degeneration (AMD), and different AF manifestations may have an impact on the diagnosis and treatment of the different AMD subtypes. It is helpful to evaluate subretinal fluid in the eyes of central serous choroidal retinopathy and can accurately detect the changes in the outer retina of the eyes without subretinal fluid. It can help to determine the type of uveitis and fully display the evolution of the disease. It can also assess the peripheral photoreceptor cell layer and RPE in patients with retinal dystrophy and retinitis pigmentosa, and comprehensively evaluate their retinal function and monitor the progress of disease. It can also assist in the evaluation of the short-term efficacy and RPE cell function after the scleral buckling surgery for patients with rhegmatogenous retinal detachment. In the future, ultra-wide field FAF may change the knowledge and intervention strategy of ocular fundus diseases and promote the clinical and scientific research in this field.
Objective To observe the angiographic features of patients with retinal vein occlusion (RVO) by ultra-wide-field fluorescein angiography (UWFA) and compare with the conventional 7 standard field (7SF) imaging. Methods This is a retrospective clinical description study. Fifty-eight eyes of 56 RVO patients were included. There were 25 males (26 eyes) and 31 females (32 eyes). The age ranged from 25 to 69 years, with a mean age of (48.12±18.56) years. The course of disease was from 2 days to 25 months, with a mean course of (12.78±11.35) months. Thirty eyes were diagnosed with central RVO (51.72%), 26 eyes were diagnosed with branch RVO (44.83%) and 2 eyes were diagnosed with hemicentral RVO (3.45%). Retinal laser photocoagulation was performed in 11 eyes (18.97%). All patients received examinations of UWFA (British Optomap 200Tx imaging system) and optical coherence tomography (OCT). Using the protocol for obtaining 7SF images as described in the Early Treatment Diabetic Retinopathy Study, 7 circular regions with a range of 30 degrees were combined as the 7SF template to determine the observation area. This template was then overlaid on the UWFA image to identify the potential viewable area of 7SF. The visualized retinal area, retinal non-perfusion area, retinal neovascularization area, and laser spot area of UWFA and 7SF were quantified by a retinal specialist. In addition, the OCT images of the affected eye were observed and analyzed to confirm the existence of macular edema. Correlation analysis was done between retinal non-perfusion, retinal neovascularization and macular edema detected by UWFA. Results The results of UWFA and 7SF examination were the same. Compared with 7SF, UWFA showed 3.53 times more retinal visual area, 3.31 times more non-perfusion area, 1.94 times more neovascularization area, and 3.59 times more laser spots (t=72.13, 4.69, 1.76, 5.78;P=0.000, 0.005, 0.102, 0.000). Lesions of 11 eyes (18.97%) were found outside the range of 7SF images. By UWFA, non-perfusion area correlated with neovascularization and macular edema (χ2=12.13, 4.82;P=0.000, 0.028;C=0.42, 0.28). Non-perfusion area anterior to the equator have significantly correlations with macular edema (χ2=6.32,P=0.012,C=0.31), but non-perfusion posterior to the globe equator have no relevance with macular edema (χ2=2.88,P=0.090, C=0.22). Conclusions UWFA can detect more peripheral retinal lesions than 7SF images. By UWFA, non-perfusion area has correlation with neovascularization and macular edema.
Objective To observe the ocular fundus features and consistency of classification of diabetic retinopathy (DR) by ultra-wide-field fluorescein angiography (UWFA) and the simulated early treatment diabetic retinopathy study (ETDRS) 7 standard field (7SF) imaging. Methods This is a retrospective clinical description study. Ninety-six eyes of 55 DR patients were included. The ages ranged from 25 to 73 years, with a mean age of (41.34±15.07) years. UWFA examination (British Optos 200Tx imaging system) using the protocol for obtaining 7SF images as described in the ETDRS, 7 circular regions with a range of 30 degrees are spliced as 7SF templates to determine the observation range. This template was then overlaid on the UWFA image to identify the potential viewable area of 7SF. And the visualized area of the retina, retinal non-perfusion (NP) area, retinal neovascularization (NV) area, and pan-retinal photocoagulation (PRP) area of UWFA and 7SF were quantified by a retinal specialist. Results UWFA imaging and 7SF imaging have a high degree of consistency in judging DR classification (kappa=0.851,P=0.000). The retinal visual area, NP area, NV area and PRP area of the UWFA imaging were 3.16, 3.38, 2.22 and 3.15 times more comparing with the simulated 7SF imaging (t=213.430, 45.013, 22.644, 142.665;P=0.000, 0.000, 0.003, 0.000). The lesions of 8 eyes were found outside the range of simulated 7SF imaging, including peripheral NP in 5 eyes, NV areas in 3 eyes, respectively. Conclusion UWFA imaging and simulated 7SF imaging are consistent to judge DR classification, but UWFA can find more peripheral retinal lesions.
ObjectiveTo assess changes of blood flow density of idiopathic choroidal neovascularization (ICNV) treated with intravitreal anti-vascular endothelial growth factor (anti-VEGF).MethodsRetrospective case analysis. Sixteen eyes of 16 patients with ICNV diagnosed with FFA and OCT were included in this study. Among them, 12 were female and 4 were male. The mean age was 33.94±9.83 years. The mean course of diseases was 5.13±4.44 weeks. The BCVA, indirect ophthalmoscope, OCT and OCT angiography (OCTA) were performed at the first diagnosis in all patients. The BCVA was converted to logMAR. The macular fovea retinal thickness (CMT) was measured by OCT, and the selected area of CNV (CSA) and flow area of CNV (CFA) were measured by OCTA. The mean logMAR BCVA, CMT, CSA and CFA were 0.336±0.163, 268.500±57.927 μm, 0.651±0.521 mm2, 0.327±0.278 mm2 , respectively. All patients were treated with intravitreal ranibizumab (IVR, 10 mg/ml, 0.05 ml). Follow-up results including the BCVA, fundus color photography, OCT and OCTA were obtained 1 month after treatment. To compare the changes of BCVA, CMT, CSA, CFA of ICNV treated with anti-VEGF. Pearson method was used to analyze the correlation between logMAR BCVA and CMT, CSA and CFA before and after the treatment.ResultsOne month after treatment, the average logMAR BCVA, CMT, CSA and CFA were 0.176±0.111, 232.500±18.910 μm, 0.420±0.439 mm2, 0.215±0.274 mm2. The mean logMAR BCVA (t=5.471, P<0.001), CMT (t=2.527, P=0.023), CSA (t=4.039, P=0.001), CFA (t=4.214, P=0.001) significantly decreased at 1 month after injection compared to baseline, and the difference had statistical significance. The results of correlation analysis showed that the post-logMAR BCVA was moderately positively correlated with pre-CSA and post-CSA (r=0.553, 0.560; P=0.026, 0.024), and strongly correlated with pre-CFA and post-CFA (r=0.669, 0.606; P=0.005, 0.013), but not correlated with pre-CMT and post-CMT (r=0.553, 0.560; P=0.026, 0.024).ConclusionThe blood flow density of ICNV measured by OCTA were significantly decreased in the treatment of anti-VEGF drugs.
ObjectiveTo observe the imaging features of cystoid macular edema (CME) in multicolor imaging (MC), and to evaluate the value of MC in the diagnosis of CME.MethodsDescriptive case series study. From August 2017 to June 2018, 42 eyes of 37 patients with CME diagnosed in the people's Hospital of Wuhan University were included in the study. Among them, there were 24 males and 13 females, with an average age of 48.51±10.29 years. There were 14 eyes with diabetic retinopathy, 14 eyes with central retinal vein occlusion, 8 eyes with branch retinal vein occlusion, 4 eyes with uveitis, and 2 eyes with Eales disease. The macular color fundus photography (CFP) was performed with Visucam 200 non-mydriatic fundus camera of Zeiss company in Germany. MC, frequnce domainoptical OCT (SD-OCT) and FFA were examined by Spectralis HRA2 + OCT of Heidelberg company in Germany. According to the MC standard method, five images, including 488 nm blue reflection (BR), 515 nm green reflection (GR), 820 nm infrared reflection (IR) imaging and standard MC and blue-green enhancement (BG), were obtained at the same time. Compared with SD-OCT, CFP and MC images were scored. Friedman M test and Wilcoxon signed rank test were used for statistical analysis.ResultsThe standard MC and BG images showed blue-green uplift area or petal-shaped appearance, surrounded by green reflection areas with clear boundaries. BR image can be seen in the low reflexes area. On the GR image, there were patches or cystic low reflection areas, surrounded by a slightly high reflection. On the IR image, patches or cystoid high reflexes can be seen, surrounded by low reflection dark areas with clear boundaries. The average scores of CFP, standard MC, GB, IR, GR and BR were 1.20±0.94, 3.05±0.99, 2.90±1.04, 2.55±1.27, 2.00±0.94, 0.51±0.85 respectively, and the differences were statistically significant (χ2= 151.61, P=0.000). The score of CFP were significantly lower than that of standard MC (Z=-5.421), BG (Z=-5.354), IR (Z=-4.714), GR (Z=-4.438) and higher than that of BR (Z=-3.435). The differences were statistically significant (P=0.000, 0.000, 0.000, 0.000, 0.001).ConclusionsThe quality of MC imaging is better than that of CFP. Combined with SD-OCT, it can be used as an assistant method to diagnose CME.