Objective To investigate the possibility of differentiation of theisolated and cultured adipose-derived adult stem cells into chondrocytes, which is induced by the recombinant human bone morphogenetic protein 2 (rhBMP-2). Methods The rabbit adipose tissue was minced and digested by collagenase Type Ⅰ. The adposederived adult stem cells were obtained and then they were cultured inthe micropellet condition respectively in the rhBMP-2 group, the rhTGF-β1 group, the combination group, and the control group for 14 days. The differentiation of the adiposederived stem cells into chondrocytes was identifiedby the histological methods including HE, Alcian blue, Von kossa, and immunohistochemical stainings. Results After the continuous induction by rhBMP-2 and continuous culture for 14 days, the HE staining revealed a formation of the cartilage lacuna; Alcian blue indicated that proteoglycan existed in the extracellular matrix; the immunohistochemical staining indicated that collagen Ⅱ was in the cellular matrix; and Von kossa indicated that the adipose-derived stem cells couldnot differentiate into the osteoblasts by an induction of rhBMP-2. Conclusion In the micropellet condition, the adipose-derived adult stemcells can differentiate into the chondrocytes, which is initially induced by rhBMP-2. This differentiation can provide a foundation for the repair of the cartilage injury.
Objective To explore the expression and significance of hypoxia-inducible factor 1α (HIF-1α) in endplate chondrocytes, and to study the relations between HIF-1α expression and endplate chondrocytes apoptosis. Methods Eight Sprague Dawley rats were selected to obtain the L1-5 intervertebral disc endplate; the endplate chondrocytes were isolated by enzyme digestion method, and the endplate chondrocytes at passage 3 were cultured under 20% O2 condition (group A), and under 0.5% O2 condition (group B). Cell morphology was observed by inverted phase contrast microscope and cell apoptosis was detected using flow cytometry after cultured for 24 hours; the mRNA expression of HIF-1α was detected by real-time fluorescent quantitative PCR, the protein expressions of HIF-1α, Bax, and Bcl-2 by Western blot. Gene clone technology to design and synthesize two siRNAs based on the sequence of HIF-1α mRNA. HIF-1α specific RNAi sequence compound was constructed and transfected into cells. The transfected endplate chondrocytes at passage 3 were cultured under 0.5% O2 condition in group C and group D (HIF-1α gene was silenced). After cultured for 24 hours, cells were observed via immunofluorescence staining of HIF-1α, and cell apoptosis was detected using flow cytometry. Meanwhile, the mRNA expressions of HIF-1α, collagen type II (COL II), Aggrecan, and SOX9 were detected by real-time fluorescent quantitative PCR, and the protein expressions of HIF-1α, Bax, and Bcl-2 by Western blot. Results At 24 hours after culture, small amount of vacuoles necrotic cells could be observed in group A and group B; there was no significant difference in apoptosis rate between groups A and B (t=1.026,P=0.471), and HIF-1α mRNA and protein expressions in group B were significantly higher than those in group A (t=22.672,P=0.015;t=18.396,P=0.013), but, there was no significant difference in protein expressions of Bax and Bcl-2 between groups A and B (t=0.594,P=0.781;t=1.251,P=0.342). The number of vacuolar necrosis cells in group D was significantly higher than that in group C, and HIF-1α positive cells were observed in group D. The apoptosis rate of group D was significantly higher than that of group C (t=27.143,P=0.002). The mRNA expressions of HIF-1α, COL II, Aggrecan, and SOX9 in group D were significantly lower than those in group C (t=21.097,P=0.015;t=34.829,P=0.002;t=18.673,P=0.022;t=31.949,P=0.007). The protein expressions of HIF-1α and Bcl-2 in group D were significantly lower than those in group C (t=37.648,P=0.006;t=16.729,P=0.036), but the protein expression of Bax in group D was significantly higher than that in group C (t=25.583,P=0.011). Conclusion HIF-1α mRNA expression is up-regulated under hypoxia condition, which will increase the hypoxia tolerance of endplate chondrocytes. Cell apoptosis is suppressed by the activation of HIF-1α in endplate chondrocytes under hypoxia condition.
Objective The changes of the aquaporins 1 (AQP-1) expression may be related to the chondrocyte apoptosis. To explore the correlation between the expression of AQP-1 and chondrocyte apoptosis by observing the expression of the AQP-1 and the Caspase-3, so as to provide experimental evidence for the further study in the pathogenesis of osteoarthritis (OA). Methods Seventy-two 8-week-old clean grade male Sprague Dawley rats, weighing 286-320 g (mean, 300 g), were randomly divided into the operated group (n=24), the sham-operated group (n=24), and the control group (n=24).OA models were made by amputating the anterior cruciate l igament and medial collateral l igament, and partial excision of medial meniscus in operated group; the articular cavity was exposed only in sham-operated group; and no treatment was given in control group. The general condition of the rat was observed after model was establ ished. At 1, 2, 4, and 8 weeks, the specimens of knee joints were harvested to perform the gross and histological observations; the mRNA expressions of AQP-1 and Caspase-3 were determined by real-time fluorescent quantitative PCR; and the activity of the Caspase-3 protease was detected. The correlations between the expression of AQP-1 mRNA and the expressions of Caspase-3 mRNA and protease were analyzed. Results Totally 6 rats died after operation, and the rats were suppl ied immediately; the other rats survived to the end of experiment. The appearance and structure of knee articular cartilage were normal in control group and sham-operated group. While in operated group, the cartilage had a rough surface with fissure and vegetation, and fibrosis and irregular cell arrangement were seen on the surface of cartilage. There were significant differences in the Mankin score between the operated group and sham-operated group, control group at 2, 4, and 8 weeks (P lt; 0.05). There was no significant difference in expressions of the AQP-1 mRNA and Caspase-3 mRNA, and the activity of the Caspase-3 protease among 3 groups at 1 week after operation (P gt; 0.05); while the expressions of the AQP-1 mRNA, Caspase-3 mRNA, and the activity of the Caspase-3 protease in operated group were significantly higher than those in sham-operated group and control group at 2, 4, and 8 weeks after operation (P lt; 0.05), andthere was an increased trend over time. There was significantly positive correlation (r=0.817, P=0.000) between the expressions of AQP-1 mRNA and Caspase-3 mRNA, and the regression equation was y=0.426 7x2+0.051 5x; meanwhile, there was also significantly positive correlation (r=0.945, P=0.000) between the expression of AQP-1 mRNA and the activity of Caspase-3 protease, and the regression equation was y=15.423 0x+4.392 8. Conclusion The up-regulation of AQP-1 expression in OA cartilage may be related to the chondrocyte apoptosis, and the changes of AQP-1 expression may involve in the pathogenesis of OA.
Objective To observe the replicative senescence of rat articular chondrocyte cultured in vitro so as to provide reference for the succeeding experiment of using medicine interfere and reverse the cataplasia of tissue engineering cartilage or probing cataplasia mechanism.Methods Different generations(P1, P2, P3 and P4) of the chondrocytes were detected with the methods of histochemistry for β-galactosidase (β-gal), electronmicroscope for ultromicrostructure, immunocytochemistry for proliferating cell nuclear antigen (PCNA),alcian blue stain for content and structure of sulfatglycosaminoglycan (GAG) of extracellular matrix (ECM),reverse transcriptionpolymerase chain reaction (RTPCR) for content of collagen Ⅱ,flow cytometry for cell life cycle and proliferative index(PI) to observe senescence of chondrocytes.Results In the 4th passage,the chondrocytes emerging quantitively positive express of β-gal,cyto-architecture cataplasia such as caryoplasm ratio increasing and karyopycnosis emerging under electronmicroscope ,cell life cycle being detented on G1 phase(83.8%),while in P1, P2, P3 the content of G1 phase was 79.1%, 79.2%, 80.8% respectively. In the 4th passage, PI decreased(16.2%),while in P1, P2, P3, it was 20.9%, 20.8%, 19.2%. The positive percentage of PCNA,the content of GAG(long chain molecule) and the positive expression of collagen Ⅱ diminished,all detections above were significantly different (Plt;0.01) when compared the 4th passage with the preceding passages.Conclusion Chondrocytes show the onset of senescence in the 4th passage.
Objective To establish a kind of gene therapy method of rheumatoid arthritis, to construct the interleukin-18-PE38 fusion gene expression vectorand to explore the expression of the fusion gene in the chondrocytes and 3T3 cells. Methods Interleukin-18-PE38 fusion gene was cleaved from plasmid PRKL459k-IL-18-PE38 by restriction enzyme digestion,then linked with vectors PsecTag2B and transformed into competence bacteria, positive clones were selected and confimed by restrictive enzyme(EcoRI) digestion assay. The rearrangement plasmid PsecTag2B-IL-18-PE38 was transfected into 3T3 cells and mouse chondrocytes by liposome protocol(experimental group),null vector was used as negative control, and the transient expression was identified by fluorescence immunocytochemical assay. Results Restrictive enzymes digestion analysis revealed thatthe length of theinterleukin-18-PE38 fusion gene was 6 000 bp. Fluorescence immunocytochemical method showed that fluorescence intensity of the experimental group is b,whilefluorescence intensity of the control group is weak. Conclusion the eukaryoticexpression vector PsecTag2B-IL-18-PE38 is established successfully which canbeexpressed in the 3T3 cells and mouse chodrocytes. Our results lay a foundationfor the further investigation for rheumatoid arthritis therapy.
ObjectiveTo study the effect of chemical extraction of allogeneic tendon and allogeneic chondrocytes for reconstruction of anterior labrum of shoulder joint in rabbits.MethodsThe body weight of 45 adult New Zealand white rabbits ranged from 2.5 to 3.0 kg. The Achilles tendons of 15 rabbits were taken and the allogeneic tendons were prepared by chemical extraction with antigen inactivation. The extracted tendons were compared with untreated tendons by HE and Masson stainings. Chondrocytes were isolated and cultured by trypsin method and identified by immunohistochemical staining of collagen type Ⅱ. The remaining 30 rabbits were used to prepare the model of anterior labrum defect of shoulder joint. After the allogeneic tendon was transplanted to the damaged labrum, the rabbits was randomly divided into two groups (15 in each group). In group A, the allogeneic chondrocytes were injected into the joint immediately after transplantation, while in group B, no treatment was made. At 4, 6, and 8 weeks after operation, 5 transplanted tendons of each group were taken. After general observation, HE staining was used to observe the number of nuclei, Masson staining was used to observe the expression of collagen fibers in muscle fiber tissues, and AB staining was used to detect the glycosaminoglycan level after transplantation, to evaluate the cell growth in the tissues of the two groups of allogeneic tendon.ResultsBy HE and Masson stainings, the allogeneic tendon antigen prepared by chemical extraction method was inactivated and the fibrous tissue structure was intact; collagen type Ⅱ immunohisto-chemistry staining showed that the cultured cells were chondrocytes. After tendon transplantation, the content of glycosaminoglycan in group A was significantly higher than that in group B (P<0.05). At 6 weeks after operation, HE staining showed that the nuclear in tendon tissue of group A was significantly more than that of group B (t=20.043, P=0.000). Masson staining showed that the number of nuclei in tendon tissue of group A was significantly increased, the muscle fibers and collagen fibers were interlaced, the tissue structure was more compact, and the tendon tissue was mainly blue stained; while the number of nuclei in group B was less, mainly collagen fibers of the original graft.ConclusionThe allogeneic tendon inactivated by chemical extraction can be used to reconstruct the defect of anterior labrum of shoulder joint in rabbits, and the combination of allogeneic chondrocytes can promote the healing of tendon transplantation.
OBJECTIVE: To observe the effects of silks on attachment, shape and function of chondrocytes cultured in vitro. METHODS: The silks from silk worm cocoons were digested by trypsin and coated with polylactic acid to from three dimensional scaffolds for rabbit rib chondrocyte culture. The growth and shape of chondrocytes were observed with phase contrast microscopy, scanning electron microscopy. RESULTS: The chondrocytes were adhered to silks slowly after chondrocytes were seeded into silk scaffolds and cells fixed on silks well 1 or 2 days later. Cells began to proliferate after 3 days and multiplicative growth was observed on the 6th day. Microholes of silk scaffolds were filled with chondrocytes 2 weeks later. Scanning electron microscopy showed that there was a lot of extracellular matrix surrounding cells. CONCLUSION: Silks are ideal for attachment, growth and function maintenance of chondrocytes, and silks can be used as scaffolds for chondrocytes in three dimensional culture.
Objective To observe the biological characters of chondrocytes in articular loose body and to find out seeding cells for cartilage tissue engineering. Methods Samples from 5 loose body cartilages, 2 normal articular cartilages and 6 osteoarthritis articular cartilages were collected. Part of each sample’s cartilage was histologically studied to observe the chondrocytes distribution the morphologic changes by toluidine-blue staining, chondrocytes’ apoptosis by terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL). The rest of each cartilage was digested and isolated by 0.25% trypsin and 0.2% collagenase Ⅱ, and then were cultivated in 10%DMEM. Their morphologic changes were observed 24h later.Comparison was made btween three cartilages. Results Compared with normal cartilage and osteoarthritis articular cartilage, the cells density was higher, their lacunars were larger, cells distribution was irregular, and apoptosis was more apparent in loose body cartilage. Conclusion The characters of chondrocytes from loose body is more like fibroblasts so they can not serve as seeding cells directly for cartilage tissue engineering.
This study was to explore a better three-dimensional (3-D) culture method of chondrocyte. The interpenetrating network (IPN) gel beads were developed through a photo-cross linking reaction with mixed barium ions and calcium ions at the ratio of 5:5 with the methacrylic alginate (MA), which was a chemically conjugated alginate with methacrylic groups. The second generation of primary cartilage cells was encapsulated in the MA gel beads for three weeks. In the designated timing, HE stain, Alamar blue method and Scanning electron microscopic were used to determine the cartilage cells growth, proliferation and the cell distribution in the scaffolds, respectively. The expression of typeⅡcollagen was investigated by an immunohistochemistry assay and the glycosaminoglycan content was quantitatively evaluated with the spectrophotometry of 1, 9 dimethylene blue assay. Compared to the alginate control group, the deposition of glycosaminoglycan was significantly upregulated in IPN-MA gel beads with higher cell proliferation. The secretion of extracellular matrix and proliferation of chondrocyte in methacrylic alginate gel beads were higher than that in Alginate beads. Cells were able to attach, to grow well on the scaffolds under scanning electron microscopy. The result of immunohistochemistry staining of collagen typeⅡwas positive, confirming the maintenance of chondrocyte phenotype in methacrylic alginate gel beads. This study shows a great potential for three-dimensional culture of cartilage.
ObjectiveTo review the pathological effects of cellular senescence in the occurrence and development of osteoarthritis (OA) and potential therapeutic targets.MethodsThe role of chondrocyte senescence, synovial cell senescence, mesenchymal stem cells senescence in OA, and the biological mechanism and progress of chondrocyte senescence were summarized by consulting relevant domestic and abroad literature.ResultsThe existing evidence has basically made clear that chondrocyte senescence, mesenchymal stem cells senescence, and cartilage repair abnormalities, and the occurrence and development of OA have a certain causal relationship, and the role of the senescence of synovial cells, especially synovial macrophages in OA is still unclear. Transcription factors and epigenetics are the main mechanisms that regulate the upstream pathways of cellular senescence. Signal communication between cells can promote the appearance of senescent phenotypes in healthy cells. Targeted elimination of senescent cells and promotion of mesenchymal stem cells rejuvenation can effectively delay the progress of OA.ConclusionCellular senescence is an important biological phenomenon and potential therapeutic target in the occurrence and development of OA. In-depth study of its biological mechanism is helpful to the early prevention and treatment of OA.