ObjectiveTo study the effect of chemical extraction of allogeneic tendon and allogeneic chondrocytes for reconstruction of anterior labrum of shoulder joint in rabbits.MethodsThe body weight of 45 adult New Zealand white rabbits ranged from 2.5 to 3.0 kg. The Achilles tendons of 15 rabbits were taken and the allogeneic tendons were prepared by chemical extraction with antigen inactivation. The extracted tendons were compared with untreated tendons by HE and Masson stainings. Chondrocytes were isolated and cultured by trypsin method and identified by immunohistochemical staining of collagen type Ⅱ. The remaining 30 rabbits were used to prepare the model of anterior labrum defect of shoulder joint. After the allogeneic tendon was transplanted to the damaged labrum, the rabbits was randomly divided into two groups (15 in each group). In group A, the allogeneic chondrocytes were injected into the joint immediately after transplantation, while in group B, no treatment was made. At 4, 6, and 8 weeks after operation, 5 transplanted tendons of each group were taken. After general observation, HE staining was used to observe the number of nuclei, Masson staining was used to observe the expression of collagen fibers in muscle fiber tissues, and AB staining was used to detect the glycosaminoglycan level after transplantation, to evaluate the cell growth in the tissues of the two groups of allogeneic tendon.ResultsBy HE and Masson stainings, the allogeneic tendon antigen prepared by chemical extraction method was inactivated and the fibrous tissue structure was intact; collagen type Ⅱ immunohisto-chemistry staining showed that the cultured cells were chondrocytes. After tendon transplantation, the content of glycosaminoglycan in group A was significantly higher than that in group B (P<0.05). At 6 weeks after operation, HE staining showed that the nuclear in tendon tissue of group A was significantly more than that of group B (t=20.043, P=0.000). Masson staining showed that the number of nuclei in tendon tissue of group A was significantly increased, the muscle fibers and collagen fibers were interlaced, the tissue structure was more compact, and the tendon tissue was mainly blue stained; while the number of nuclei in group B was less, mainly collagen fibers of the original graft.ConclusionThe allogeneic tendon inactivated by chemical extraction can be used to reconstruct the defect of anterior labrum of shoulder joint in rabbits, and the combination of allogeneic chondrocytes can promote the healing of tendon transplantation.
OBJECTIVE: To study chondrogenesis of calcium alginate-chondrocytes predetermined shapes. METHODS: Chondrocytes isolated from ears of rabbit by type II collagenase digestion, and then were mixed with 1.5% solidium alginate solution. The suspension was gelled to create three spatial shapes as triangle, circle and quadrilateral by immersed into 2.5% CaCl2 for 90 minutes, and then was implanted into the subcutaneous pocket on the dorsum of the rabbit. Samples were harvested at 6 and 12 weeks after implantation. RESULTS: Gross examination of excised specimens at 6 and 12 weeks after implantation revealed the presence of new cartilage of approximately the same dimensions as the original construct. Histologic evaluation using hematoxylin and eosin stains confirmed the presence of cartilage nodules at 6 weeks after implantation. After 12 weeks, mature cartilage was observed and histologic analysis confirmed the presence of well formed cartilaginous matrix. CONCLUSION: Predetermined shapes neocartilage can be regenerated using calcium alginate as a carrier of chondrocytes in the bodies of immune animals.
Objective To investigate the effects of nucleus localization signal linked nucleic kinase substrate short peptide (NNS) conjugated chitosan (CS) (NNSCS) mediated the transfection of microRNA-140 (miR-140) in rabbit articular chondrocytes in vitro. Methods Recombinant plasmid GV268-miR-140 and empty plasmid GV268 were combined with NNSCS to form NNSCS/pDNA complexes, respectively. Chondrocytes were isolated and cultured through trypsin and collagenase digestion from articular cartilage of newborn New Zealand white rabbits. The second generation chondrocytes were divided into 3 intervention groups: normal cell control group (group A), NNSCS/GV268 empty plasmid transfection group (group B), and NNSCS/GV268-miR-140 transfection group (group C). NNSCS/GV268 and NNSCS/GV268-miR- 140 complexes were transiently transfected into cells of groups B and C. After transfection, real-time fluorescent quantitative PCR (RT-qPCR) was used to detect the expressions of exogenous miR-140; Annexin Ⅴ-FITC/PI double staining and MTT assay were used to detect the effect of exogenous miR-140 on apoptosis and proliferation of transfected chondrocytes; the expressions of Sox9, Aggrecan, and histone deacetylase 4 (Hdac4) were detected by RT-qPCR. Results RT-qPCR showed that the expression of miR-140 in group C was significantly higher than that in groups A and B (P<0.05). Compared with groups A and B, the apoptosis rate in group C was decreased and the proliferation activity was improved, Sox9 and Aggrecan gene expressions were significantly up-regulated, and Hdac4 gene expression was significantly down-regulated (P<0.05). There was no significant difference in above indexes between groups A and B (P>0.05). Conclusion Exogenous gene can be carried into the chondrocytes by NNSCS and expressed efficiently, the high expression of miR-140 can improve the biological activity of chondrocytes cultured in vitro, which provides important experimental basis for the treatment of cartilage damage diseases.
OBJECTIVE This paper aims to investigate the suitable cell density and the best formation time of tissue engineered autologous cartilage and to provide theoretical basis and parameters for clinical application. METHODS The chondrocytes isolated from mini swines’ ears were mixed with injectable biocompatible matrix (Pluronic), and the density of cell suspensions were 10, 20, 30, 40, 50, 60, 70 x 10(4)/ml. The chondrocyte-polymer constructs were subcutaneously injected into the abdomen of autologous swine. The specimens were observed grossly and histologically after 6 weeks, and investigated the suitable cell density. Then the chondrocyte-polymer constructs with suitable cell density were transplanted into the abdomen of autologous swine and evaluated grossly and histologically in 1, 3, 6, 9, 15 weeks after transplantation to investigate the best formation time of tissue engineered cartilage. RESULTS The experiments demonstrated that the tissue engineered autologous cartilage was similar to the natural cartilage on animals with normal immune system in histological characteristics. The optimal chondrocyte density is 50 x 10(6)/ml, and the proper harvest time is the sixth week. CONCLUSION With tissue engineering skills, we have identified the optimal chondrocyte density and the proper harvest time.
Objective To study the effect of two cytokines, basic fibroblast growth factor(bFGF) and insulin-like growth factor-I(IGF-I), on cell proliferation in chondrocytes of adult rabbits. Methods The primary chondrocytes of adult rabbits were harvested and cultured with bFGF and IGF-I at different concentrations,respectively, as well as with the mixture of the two cytokines; the quantity of cultured chondrocytes was detected by MTT assay at the 24th, 48th and 72th hours; and the final fold increase of different groups was measured by cell count for the 3rd passage; and the proliferation index of the groups was recorded by flowing cytometer on the 14th day. Results ① The cultured chondrocytes with either bFGF, IGF-I or their mixture were significantly more than that of control group at the 24th, 48th and 72th hours (P<0.01). ② After the 3rd passage, the final folds of proliferation were significantly higher in the groups with cytokinesthan in the control group (P<0.01); and the final fold with the mixture ofcytokines was significantly higher than that of both IGF-I and bFGF (P<0.01). ③ Theproliferation index was significantly higher in the groups with cytokines than in the control group (P<0.01); the proliferation index with the mixture of cytokines was significantly higher than that of both IGF-I and bFGF (P<0.05); besides, proliferation index was higher when cytokine was applied twice than once (P<0.05). Conclusion bFGF and IGF-I could promote chondrocytes proliferation of adult rabbits obviously and they are synergistic in cell proliferation.
Objective To compare biological characteristics between articular chondrocyte and meniscal fibrochondrocyte cultured in vitro andto investigate the possibility of using cultured cartilage as a substitute for meniscus.Methods Chondrocytes isolated from articular cartilage and meniscus of rabbits aged 3 weeks were respectively passaged in monolayer and cultured in centrifuge tube. Cartilages cultured in centrifuge tube and meniscus of rabbit aged 6 weeks were detected by histological examination and transmission electron microscopy. Growth curves of articular chondrocytes and meniscalfibrochondrocytes were compared; meanwhile, cell cycles of articular chondrocytes and meniscal fibrochondrocytes in passage 2and 4 were separately measured by flow cytometry.Results Articular chondrocytes in passage 4 were dedifferentiated. Articular chondrocytes formed cartilage 2 weeks after cultivation in centrifuge tube, but meniscal fibrochondrocytes could not generate cartilage. The differences in ultrastructure and histology obviously existed between cultured cartilage and meniscus; moreover, apoptosis of chondrocytes appeared in cultured cartilage. Proportion of subdiploid cells in articular chondrocytes passage 2 and 4 was markedly higher than that in passage 2 and 4 fibrochondrocytes(Plt;0.05). Conclusion Meniscal fibrochondrocytes can not form cartilage after cultivationin centrifuge tube, while cartilage cultured in centrifuge tube from articular chondrocytes can not be used as graft material for meniscus. Articular cartilage ismarkedly different from meniscus.
Objective To investigate the effect of epigallocatechin gallate (EGCG) on chondrocyte senescence and its mechanism. Methods The chondrocytes were isolated from the articular cartilage of 4-week-old Sprague Dawley rats, and cultured with type Ⅱcollagenase and passaged. The cells were identified by toluidine blue staining, alcian blue staining, and immunocytochemical staining for type Ⅱ collagen. The second passage (P2) cells were divided into blank control group, 10 ng/mL IL-1β group, and 6.25, 12.5, 25.0, 50.0, 100.0, and 200.0 μmol/L EGCG+10 ng/mL IL-1β group. The chondrocyte activity was measured with cell counting kit 8 after 24 hours of corresponding culture, and the optimal drug concentration of EGCG was selected for the subsequent experiment. The P2 chondrocytes were further divided into blank control group (group A), 10 ng/mL IL-1β group (group B), EGCG+10 ng/mL IL-1β group (group C), and EGCG+10 ng/mL IL-1β+5 mmol/L 3-methyladenine (3-MA) group (group D). After cultured, the degree of cell senescence was detected by β-galactosidase staining, the autophagy by monodansylcadaverine method, and the expression levels of chondrocyte-related genes [type Ⅱ collagen, matrix metalloproteinase 3 (MMP-3), MMP-13] by real-time fluorescent quantitative PCR, the expression levels of chondrocyte-related proteins (Beclin-1, LC3, MMP-3, MMP-13, type Ⅱ collagen, P16, mTOR, AKT) by Western blot. Results The cultured cells were identified as chondrocytes. Compared with the blank control group, the cell activity of 10 ng/mL IL-1β group significantly decreased (P<0.05). Compared with the 10 ng/mL IL-1β group, the cell activity of EGCG+10 ng/mL IL-1β groups increased, and the 50.0, 100.0, and 200.0 μmol/L EGCG significantly promoted the activity of chondrocytes (P<0.05). The 100.0 μmol/L EGCG was selected for subsequent experiments. Compared with group A, the cells in group B showed senescence changes. Compared with group B, the senescence rate of chondrocytes in group C decreased, autophagy increased, the relative expression of type Ⅱ collagen mRNA increased, and relative expressions of MMP-3 and MMP-13 mRNAs decreased; the relative expressions of Beclin-1, LC3, and type Ⅱ collagen proteins increased, but the relative expressions of P16, MMP-3, MMP-13, mTOR, and AKT proteins decreased; the above differences were significant (P<0.05). Compared with group C, when 3-MA was added in group D, the senescence rate of chondrocytes increased, autophagy decreased, and the relative expressions of the target proteins and mRNAs showed an opposite trend (P<0.05). ConclusionEGCG regulates the autophagy of chondrocytes through the PI3K/AKT/mTOR signaling pathway and exerts anti-senescence effects.
Objective To observe the replicative senescence of rat articular chondrocyte cultured in vitro so as to provide reference for the succeeding experiment of using medicine interfere and reverse the cataplasia of tissue engineering cartilage or probing cataplasia mechanism.Methods Different generations(P1, P2, P3 and P4) of the chondrocytes were detected with the methods of histochemistry for β-galactosidase (β-gal), electronmicroscope for ultromicrostructure, immunocytochemistry for proliferating cell nuclear antigen (PCNA),alcian blue stain for content and structure of sulfatglycosaminoglycan (GAG) of extracellular matrix (ECM),reverse transcriptionpolymerase chain reaction (RTPCR) for content of collagen Ⅱ,flow cytometry for cell life cycle and proliferative index(PI) to observe senescence of chondrocytes.Results In the 4th passage,the chondrocytes emerging quantitively positive express of β-gal,cyto-architecture cataplasia such as caryoplasm ratio increasing and karyopycnosis emerging under electronmicroscope ,cell life cycle being detented on G1 phase(83.8%),while in P1, P2, P3 the content of G1 phase was 79.1%, 79.2%, 80.8% respectively. In the 4th passage, PI decreased(16.2%),while in P1, P2, P3, it was 20.9%, 20.8%, 19.2%. The positive percentage of PCNA,the content of GAG(long chain molecule) and the positive expression of collagen Ⅱ diminished,all detections above were significantly different (Plt;0.01) when compared the 4th passage with the preceding passages.Conclusion Chondrocytes show the onset of senescence in the 4th passage.
Objective To observe the effect of Melittin on collagen type II (Col-II) expression of rat endplate chondrocytes (EPCs) induced by interleukin 1β (IL-1β). Methods Primary EPCs from the lumbar vertebra of 4-week-old Sprague Dawley rats were culturedin vitro and identified by morphological observation, toluidine blue staining and Col-II immunofluorescence staining. Then, MTT assay was used to determine the optimal concentration of IL-1 and Melittin. Next, EPCs at passage 3 were randomly divided into 4 groups: no treatment was done in group A as control group; the optimal concentration of IL-1β, Melittin, and both IL-1β and Melittin were used in groups B, C, and D respectively. The expression of Col-II was detected by Western blot after 48 hours intervention. Results Under inverted microscope, the first generation EPCs were polygonal; cell proliferation decreased after fifth generation, and cell morphology changed into fusiform. The acidic mucosubstance in the cytoplasm (such as Aggrecan) was stained dark blue by toluidine blue. After marking Col-II by immunofluorescence, the positive expression of cytoskeleton (green fluorescence) could be observed. MTT assay showed that IL-1β and Melittin could inhibit the EPCs in a dose-dependent manner after intervention of 24 and 48 hours, and the optimal concentrations of IL-1β and Melittin intervention were 10 ng/mL and 1.0 μg/mL respectively. Compared with group A, the expression of Col-II was significantly reduced in group B, and was significantly increased in group C by Western blot assay, but there was no significant difference between group D and group A. The Col-II expression levels of groups A, B, C, and D were 0.991±0.024, 0.474±0.127, 1.913±0.350, and 1.159±0.297 respectively, showing significant difference between the other groups (P<0.05) except between group A and group D (P>0.05). Conclusion Melittin has a protective effect on endplate cartilage, and the research results provide experimental basis for the prevention and treatment of spinal degenerative disease.
Objective To observe the biological characters of chondrocytes in articular loose body and to find out seeding cells for cartilage tissue engineering. Methods Samples from 5 loose body cartilages, 2 normal articular cartilages and 6 osteoarthritis articular cartilages were collected. Part of each sample’s cartilage was histologically studied to observe the chondrocytes distribution the morphologic changes by toluidine-blue staining, chondrocytes’ apoptosis by terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL). The rest of each cartilage was digested and isolated by 0.25% trypsin and 0.2% collagenase Ⅱ, and then were cultivated in 10%DMEM. Their morphologic changes were observed 24h later.Comparison was made btween three cartilages. Results Compared with normal cartilage and osteoarthritis articular cartilage, the cells density was higher, their lacunars were larger, cells distribution was irregular, and apoptosis was more apparent in loose body cartilage. Conclusion The characters of chondrocytes from loose body is more like fibroblasts so they can not serve as seeding cells directly for cartilage tissue engineering.