With the prevalence of cardiovascular diseases, the development of cardiac rehabilitation is an inevitable trend. Cardiac rehabilitation is a comprehensive and long-term plan including medical assessment, exercise prescription, correction of cardiovascular risk factors, education, counseling, and behavioral intervention. Evidence-based medical evidence confirms that cardiac rehabilitation plays an important role in the three level prevention of cardiovascular disease. In this paper, we searched the literature in recent 10 years to explain the current situation and future research direction of cardiac rehabilitation, and explore the best mode of cardiac rehabilitation.
ObjectiveTo develop a predictive model for postoperative pulmonary complications (PPC) following video-assisted thoracic surgery (VATS) in lung cancer patients by integrating cardiopulmonary exercise testing (CPET) parameters and machine learning techniques. MethodsA retrospective analysis was conducted patients with early-stage non-small cell lung cancer who underwent CPET and VATS at Guangdong Provincial People’s Hospital between October 2021 and July 2023. Patients were divided into a PPC group and a non-PPC group. The least absolute shrinkage and selection operator (LASSO) regression was used to select important features associated with PPC. Six machine learning algorithms were utilized to construct prediction models, including logistic regression, support vector machine, k-nearest neighbors, random forest, gradient boosting machine, and extreme gradient boosting. The optimal model was interpreted using SHapley Additive exPlanations (SHAP). ResultsA total of 325 patients were included, with an average age of 60.36 years, and 55.1% were male. Significant differences were observed between the PPC and non-PPC groups in age, diabetes, coronary heart disease, surgical approach, forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), FVC% predicted, peak oxygen uptake (peak VO2), anaerobic threshold (AT), and ventilatory equivalent for carbon dioxide slope (VE/VCO2 slope) (P<0.05). In the predictive model constructed by selecting 7 key features using LASSO regression, the random forest model demonstrated the best overall performance across various metrics, with an AUC of 0.930, an F1 score of 0.836, and a Brier score of 0.133 in the training set. It also exhibited good predictive ability and calibration in the test set. SHAP analysis ranked feature importance as follows: peak VO2, VE/VCO2 slope, age, FEV1, smoking history, diabetes, and surgical approach. ConclusionIntegrating CPET parameters, the random forest model can effectively identify high-risk patients for PPC and has the potential for clinical application.