west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "钾通道" 13 results
  • Effect of hyperpolarized arrest on alternations of microviscosity of myocardial cell membrane during cardiopulmonary bypass

    Objective To observe the influences of depolarized arrest and hyperpolarized arrest on alternation of fluidity of myocardial cell membrane during cardiopulmonary bypass (CPB) and evaluate the protective effects on myocardium of hyperpolarized arrest. Methods Seventy-two felines were randomized into three groups, each group 24. Control group: 180 minutes of CPB was conducted without aortic and vena caval cross-clamping. Depolarized arrest group: hearts underwent 60 minutes of global ischemia after aortic cross-clamping (ACC) followed by 90 minutes of reperfusion. The cardioplegic solution consisted of St. Thomas solution (K+16mmol/L). Hyperpolarized arrest group: the protocol was the same as that in depolarized arrest group except that the cardioplegic solution consisted of St.Thomas solution with pinacidil (50 mmol/L,K+5mmol/L). Microviscosity, the reciprocal of fluidity of myocardial membrane was measured in all groups by using fluorescence polarization technique. (Results )Microvis cosity of myocardial cell in depolarized arrest group during ACC period was significantly higher than that before ACC and kept on rising during reperfusion period. Microviscosity of myocardial cell in hyperpolarized arrest group during ACC was trending up and reperfusion periods as well, but markedly lower compared to that in depolarized arrest group at corresponding time points(Plt;0.01). Conclusion Hyperpolarized arrest is more effective in protecting myocardial cells from ischemia-reperfusion injury than depolarized arrest during CPB by maintaining better fluidity of myocardial membrane.

    Release date:2016-08-30 06:28 Export PDF Favorites Scan
  • Preservative Effect of Diazoxide Cardioplegic Solution on the Reduction of Apoptotic Cardiomyocytes of Donor Heart

    Objective To investigate the effects of diazoxide (DIA)cardioplegic solution on the reduction of donor cardiomyocyte apoptosis, Methods In a Krebs-Henseleit (KH) solution perfused isolated rabbit heart Langendorff model, 32 rabbit hearts were divided into four groups with simple random sampling (8 rabbits in each group ): DIA group (50μmol/L diazoxide mixed in KH solution),STH group (ST, Thomas' solution), 5-HD group (50μmol/L diazoxide and 100μmol/L 5-hydroxydecanoic acid mixed in KH solution), KH group (KH solution), The rabbit hearts of each group underwent 6 hours of hypothermic (4 C) storage in the corresponding cardioplegic solution. Left ventricular developed pressure (LVDP), maximal values of positive rate of left ventricular pressure (+dp/dtmax) were measured before and after storage, The post-storage values of LVDP and +dp/dtmax were expressed as the percentage of pre-storage control values. Apoptotic cardiomyocytes were detected by the TdT- mediated dUTP-biotin nick end labeling (TUNEL). Malonaldehyde (MDA) contents and adenosine triphosphate (ATP) contents were also measured after storage. Results Recovery rates of LVDP, +dp/dtmax, and ATP contents in DIA group were higher than those of other 3 groups respectively(P〈0. 05), Cardiomyocytes apoptosis percentage and MDA content were lower than other 3 groups respectively(P〈0. 05), Conclusions Diazoxide cardioplegic solution can protect the isolated hearts and this may be relates to opening selective mitochondrial KATP channels. The selective mitochondrial KATP channel antagonist 5-hydroxydecanoic acid can block the cardioprotective effect of diazoxide.

    Release date:2016-08-30 06:26 Export PDF Favorites Scan
  • Effects of docosahexenoic acid on large conductance Ca+-activated K+ channels in retinal smooth muscle cells

    Objective To investigate the effects of docosahexenoic acid (DHA) on large conductance Ca2+-activated K+ (BK) channels in normal retinal artery smooth muscle cells (RASMCs). Methods Cultured human RASMCs (6 th-8 th generations) were used to patch clamp experiment. The open probabihties (NP0) in BK channels with different concentrations (0.0, 1.0, 3.0, 5.0, 7.5, 10.0 μmol/L) of DHA were recorded by patch clamp technique in single channel configuration. RASMCs were intervened by different concentrations (0.0, 1.0, 5.0 μmol/L) of DHA as control group, low and high doses of DHA groups, respectively. The protein expressions of β subunit of BK channels in RASMCs from three groups were measured by Western blot. Results The NP0 of BK channels were 0.044 4±0.001 2, 0.081 2±0.004 2, 0.209 0±0.006 1, 0.310 5±0.005 3, 0.465 0±0.007 8 and 0.497 7±0.014 5 with perfusate of 0.0, 1.0, 3.0, 5.0, 7.5, 10.0 μmol/L DHA. DHA activated BK channels in a dose-dependent manner (F=2.621,P<0.05). There was no significant difference in the protein expression of control group, low and high doses of DHA groups (F=11.657,P>0.05). Conclusion DHA can directly activate BK channels, no increasing in subunit expression of BK channels.

    Release date:2017-05-15 12:38 Export PDF Favorites Scan
  • The regulation of Kir4.1 by pigment epithelium-derived factor in Müller cells under high glucose conditions

    Objective To investigate Kir4.1 expressions in Muuml;ller cells under high glucose conditions and treatment of pigment epitheliumderived factor (PEDF). Methods Cultured rat Muuml;ller cells were divided into control group (5 mmol/L glucose), high glucose group (25 mmol/L glucose), PEDF treatment group (25 mmol/L glucose+100 ng/ml PEDF) and intervention control group(25 mmol/L glucose+phosphate buffer solution). Kir4.1 expressions were measured by Western blot and real-time reverse transcription polymerase chain reaction (RT-PCR). Reactive oxygen species (ROS) productions were measured using 2prime;7prime;dichlorofluorescin diacetate and glutathione peroxidase (GPx)expressions were studied by real-time RT-PCR. Results By Western blot and real-time RT-PCR, it was found the expressions of Kir4.1 decreased obviously under high glucose conditions (real-time RT-PCR: t=4.12, P<0.05; Western blot: t=3.53,P<0.05); simultaneously, ROS generation was increased (t=3.76,P<0.05)and GPx level was decreased (t=3.18,P<0.05). PEDF treatment inhibited the high glucose-induced Kir4.1 down regulation (real-time RT-PCR: t=3.66, P<0.05; Western blot: t=6.43,P<0.01) and decreased ROS generations (t=4.11,P<0.05) and increased GPx levels (t=5.12,P<0.01). Conclusions The high glucose can supress Kir4.1 expressions in Muuml;ller cells by oxidative stress, and PEDF can ameliorate these effects.

    Release date:2016-09-02 05:25 Export PDF Favorites Scan
  • Changes in open probability and protein expression of large conductance Ca2+-activated K+ channel in retinal vascular smooth muscle cells of diabetic rats

    ObjectiveTo observe the changes in open probability and protein expression of large conductance Ca2+-activated K+ (BK) channel in retinal vascular smooth muscle cells (RVSMCs) of diabetic rats. MethodsStreptozotocin (STZ)-induced rat diabetic animal model was established by STZ injection intraperitoneally.RVSMCs were isolated by enzyme digestion. The BK currents in control and diabetic groups were recorded by patch clamp technique in single channel configuration. BK channel protein expression in control and diabetic group were measured by Western blot. ResultsCompared with control group, the NP0 of BK channels in diabetic group were significantly increased (t=4.260, P < 0.05). Compared with control group, there was no significant difference inα-subunit protein expression in diabetic group in RVSMCs (t=10.126, P > 0.05); however, β1-subunit protein expression was remarkably increased in diabetic group (t=5.146, P < 0.05). ConclusionThe NP0 of BK channels andβ1-subunit protein expression are increased in RVSMCs of diabetic rats.

    Release date: Export PDF Favorites Scan
  • The Protective Effects of Ischemic Postconditioning on Ischemiareperfusion Myocardium and the Relationship with Mitochondrial Adenosine Triphosphate Sensitive K+ Channels

    Objective To investigate the protective effects of ischemic postconditioning (IPo) on ischemiareperfusion (I/R) myocardium and the relationship with mitochondrial adenosine triphosphate (ATP) sensitive K+ channels (mitoKATP) and provide evidences to the development of druginduced postconditioning. Methods Langendorff models were established in 40 Wistar rats which were divided into 5 groups by random number table with 8 rats in each group. Normal control group(NC group): the rat hearts were continuously reperfused by KrebsHenseleit bicarbonate buffer (K-HB) for 100 min without any other treatment; I/R group: the rat hearts underwent a 40-min global ischemia followed by a 60-min reperfusion; IPo group: after a 40-min global ischemia, the process of 10-second reperfusion followed by a 10-second ischemia was repeated 6 times, then there was a continuous 58min reperfusion; 5-hydroxydecanoic acid(5-HD) group: after a 40min global ischemia, hearts with 5HD(100 μmol/L) K-HB were reperfused for 15min and then perfused without 5HD for 45min;IPo+5-HD group: after a 40-min global ischemia, the process that the isolated hearts with 5-HD(100 μmol/L) KHB were reperfused for 10second followed by a 10second ischemia was repeated 6 times, then the hearts with 5-HD(100 μmol/L) KHB were continuously [CM(159mm]perfused for 13-min followed by reperfusion without 5-HD(100 μmol/L) K-HB for 45-min. The cardiac function,coronary flow(CF), cardiac troponin I(cTnI) content in coronary effluent, the area of acute myocardial infarction (AMI) and myocardial ultrastructure were observed. Results Left ventricular developed pressure(74.3±3.3 mm Hg vs. 57.1±3.3 mm Hg,t=1300, P=0.000),+dp/dtmax(1 706.6±135.6 mm Hg/s vs. 1 313.3±96.2 mm Hg/s,t=6.28,P=0.000),-dp/dtmax(1 132.8±112.1 mm Hg/s vs. 575.7±67.7 mm Hg/s,t=13.48, P=0.000) and CF(6.49±0.30 ml/min vs. 3.70±0.24 ml/min,t=28.6,P=0.000) in IPo group were higher than those in I/R group. Left ventricular enddiastolic pressure(10.9±1.7mm Hg vs. 26.2±1.5 mm Hg,t=-19.21, P=0000)and cTnI content in coronary effluent (0.62±0.01 ng/ml vs. 0.71±0.01 ng/ml, t=-12.00,P=0.000) were lower than those in I/R group; the area of AMI decreased 20.8% compared with that in I/R group (Plt;0.05). The myocardial protective effect in IPo+5HD group was similar with that in IPo group, but lower than that in IPo group. The electron microscope showed that IPo and IPo+5HD could reduce myocardial fiber damage and mitochondrial damage caused by I/R. Conclusion IPo can protect I/R myocardium, which is achieved mainly by activating mitoK-ATP channels. 

    Release date:2016-08-30 06:06 Export PDF Favorites Scan
  • The Role of Mitochondrial Adenosine Triphosphatesensitive Potassium Channel in Immature Myocardial Ischemic Preconditioning

    Objective To investigate the role of mitochondrial adenosine triphosphatesensitive potassium channel(mitoKATP) in immature myocardial ischemic preconditioning, and to provide evidence for immature myocardial protection. Methods Langendorff isolated heart infused model was used in the experiment. Twentyfour rabbits (aged from 14 to 21 days) were randomly divided into 4 groups:ischemiareperfusion group(I/R group), myocardial ischemic preconditioning group(E1 group), 5hydroxydecanoate(5-HD) group (E2 group) and Diazoxide (Diaz) group(E3 group). Hemodynamics recovery rate, myocardial water content(MWC), the leakage rates of serum creatine kinase and lactate dehydrogenase, adenosine triphosphate content, superoxide dismutase activity, malondialdehyde content, myocardial cell Ca2+ content and myocardial mitochondrial Ca2+ content, myocardial mitochondrial Ca2+-ATPase activity, the adenosine triphosphate(ATP) synthesizing ability of myocardial mitochondria were tested, and myocardial ultrastructure was observed via electron microscopy. Results The hemodynamics recovery rate, myocardial water content(P<0.05), adenosine triphosphate content, superoxide dismutase activity, myocardial mitochondrial Ca2+-adenosine triphosphyatase(ATPase) activity and the ATP synthesizing ability of myocardial mitochondria of the rabbits in E1 and E3 group were significantly better than that in I/R group and E2 group(P<0.05). Malondialdehyde content, the leakage rates of serum creatine kinase and lactate dehydrogenase, myocardial cell Ca2+ content and myocardial mitochondrial Ca2+ content of the rabbits in E1 group and E3 group were significantly lower than that in I/R group and E2 group (P<0.05). The myocardial ultrastructure injury in E1 and E3 group were significantly reduced compared with that in I/R and E2 group. Conclusion Myocardial ischemic preconditioning has significant protective effects on immature myocardium. Its mechanism may be related to the activation of mitoKATP.

    Release date:2016-08-30 06:05 Export PDF Favorites Scan
  • Effects of Dichloroacetate on the Kv1. 5 of Pulmonary Arterial Smooth Muscle Cells in Simulated High Altitude Pulmonary Hypertension Rats

    Objective To investigate the role of Kv1. 5 in the pathogenesis of pulmonary hypertension simulated by hypobaria and hypoxia, and the effects of dichloroacetate ( DCA) on the Kv1. 5 expression in pulmonary arterial smooth muscle cells ( PASMCs ) and mean pulmonary arterial pressure ( mPAP) . Methods Twenty-four SD rats were randomly divided into a normal group ( N group) , a high altitude group ( HA group) , and a DCA treated group ( DCA group) . The N group were fed in normalconditions, the HA group and DCA group were fed in a hypobaria and hypoxia chamber simulated to an altitude of 5000 meters. In addition, the DCA group rats were gastric gavaged with DCA ( 70 mg · kg - 1 · d - 1 ) .Twenty-one days later, percentage of wall thickness ( WT% ) and percentage of wall area ( WA% ) of the pulmonary arteriole, mPAP, and the ratio of right ventricle / left ventricle and septum ( RV/ LV + S) were evaluated. Real-time PCR, immunohistochemistry and Western blot were carried out to detect the Kv1. 5 expression in PASMCs. Results In the HA group, WT% , and WA% of pulmonary arteriole, mPAP and RV/ ( LV + S) all increased significantly compared with the N group ( P lt;0. 01) . These changes in the DCA group were significantly lower than those in the HA group( P lt; 0. 01) . Furthermore, the protein and mRNA expression of Kv1. 5 in the PASMCs deceased significantly in the HA group compared with the N group( P lt;0. 01) , but recovered in the DCA group ( P lt;0. 01) . Conclusions The expression of Kv1. 5 in PASMCs is tremendously inhibited in rats fed in high altitude, which might be a important role of pulmonaryhypertension. DCA can inhibit the remodeling of pulmonary arterials probably by recovering Kv1. 5 expression.

    Release date:2016-08-30 11:52 Export PDF Favorites Scan
  • Effects of high concentration glucose on ion channel of retinal Müller cells cultured in vitro

    Objective To observe the effects of high concentr at ion glucose on the calcium-activated potassium channel of rabbits′ retinal Müller cells. Methods The rabbits′retinal Müller cells were cultured in vitro under the condition of high concentration glucose, and identified by immunohistochemical staining and transmission electron microscopy. Patch-clamp technique was used to observe the changes of the calcium-activated potassium channel of retinal Müller cells caused by high concentration glucose at different time.Results High concentration glucose could inhibit the calcium-activated potassium channel of cultured retinal Müller cells in a time-dependent manner. Conclusion High concentration glucose may reduce the biological functions of Müller cells by inhibiting calcium-activated potassium channel. (Chin J Ocul Fundus Dis,2003,19:164-167)

    Release date:2016-09-02 06:00 Export PDF Favorites Scan
  • 儿童癫痫中的神经元抗体:临床特征和未经免疫治疗的历史队列远期预后

    神经元细胞表面抗体在自身免疫性脑炎的发病中起着明确的作用;早期诊断和治疗的患者预后更好。在不伴脑炎的儿童癫痫中也见神经元抗体阳性的报道。文章旨在评估神经元抗体对儿童癫痫患者远期预后是否有影响。该前瞻性研究患者来自荷兰儿童癫痫研究(Dutch Study of Epilepsy, DSEC)的4个中心,于1988年-1992年期间招募患者(n=178),均未接受免疫治疗。以健康且年龄匹配的骨髓捐赠者作为正常对照(n=112)。所有受试者均使用标准方法,检测血清N-甲基-D-天冬氨酸受体(N-methyl-D-aspartate, NMDAR)、α氨基-3-羟基-5-甲基-4-异恶唑丙酸受体、富含亮氨酸胶质瘤失活1蛋白,接触蛋白相关蛋白2(Contactin associated protein like 2, CASPR2)、contactin-2、谷氨酸脱羧酶和电压门控钾通道(Voltage gated potassium channel, VGKC)-复合物抗体。均未使用脑脊液(Cerebrospinal fluid, CSF)样本检测。并将抗体检测结果与随访15年以上的临床资料进行相关性分析。17例患者(9.5%)神经元抗体检测为阳性,分别为VGKC复合物(n=3),NMDAR(n=7),CASPR2(n=4) 和contactin-2(n=3),同时有3名(3/112,2.6%)健康对照者神经元抗体检测为阳性,VGKC复合物(n=1),NMDAR (n=2)(P=0.03)。虽然抗体滴度相对较低(细胞表面抗体≤ 1:100),但17例阳性样本中有8例(47%)可与活性海马神经元表面结合,提示具有潜在的致病性。在抗体阳性患者中更多见预先存在的认知障碍(9/17vs.33/161, P=0.01)。14例抗体阳性患者接受了规范的抗癫痫药物(AEDs)治疗。其中3例(17%)为耐药性癫痫,但与161例抗体阴性的患者中16例为耐药性癫痫(16人,10%)相比,不存在统计学差异。在6和/或12个月有随访样本的96例患者中,7例之前抗体阳性患者中6例抗体转阴,相反,另有7例患者在随访时第一次出现了抗体阳性。在9.5%的儿童新发癫痫患者中发现低水平的神经元抗体阳性,虽然抗体不一定会持续存在,但在随访中可见神经元抗体由阴性转为阳性,这表明抗体可能是由于神经元的损伤或炎症的继发反应所产生的。此外,由于抗体阳性的儿童癫痫患者对规范AEDs的反应和远期预后与抗体阴性患者没有差异,提示在儿童癫痫中常规进行神经元抗体检测意义不大。抗体阳性组中预先存在的认知障碍的发生率较高,17例患者中7例患者CASPR2和contactin-2抗体阳性,以及17例血清样品中8例与活性海马神经元的结合表明,即使是继发反应,神经元抗体也可能参与到儿童癫痫的共病发生中。

    Release date:2017-07-26 04:06 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content