west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "长链非编码 RNA" 23 results
  • Regulation of long non-coding RNA in cartilage injury of osteoarthritis

    ObjectiveTo summarize the regulatory effect of long non-coding RNA (lncRNA) on osteoarthritis (OA) cartilage injury.MethodsThe molecular functions and mechanisms of lncRNA were introduced and its regulatory effects on the pathological processes of OA were elaborated by referring to the relevant literature at domestic and abroad in recent years.ResultsThe pathological characteristics of OA are degeneration of articular cartilage and inflammation of synovial tissue, but its etiology and pathological mechanism have not been clarified. lncRNA is a kind of heterogeneous non-coding RNA, which plays a regulatory role in many inflammation-related diseases and exerts a wide range of biological functions. lncRNA is a regulator involved in the pathogenesis of OA, and is abnormally expressed in OA cartilage, leading to the degeneration of the extracellular matrix of cartilage.ConclusionAt present, there have been preliminary studies on the pathological effects of lncRNA in regulating OA and the biological functions of chondrocytes. However, the pathogenesis of lncRNA and its regulatory network in OA and the way in which it regulates inflammatory pathways are still unclear, and further exploration is needed.

    Release date:2020-11-27 06:47 Export PDF Favorites Scan
  • Expression of long non-coding RNA GAS5 in hepatocellular carcinoma tissues and its clinical significance

    ObjectiveTo investigate the expression of growth arrest-specific 5 (GAS5) mRNA and its clinical significance in hepatocellular carcinoma.MethodsThe expression of GAS5 mRNA in the hepatocellular carcinoma tissues and corresponding adjacent tissues were detected by real time-PCR. The relationship between the expression of GAS5 mRNA and clinicopathological characteristics were analyzed by SPSS 19.0 software.ResultsThe expression of GAS5 mRNA in hepatocellular carcinoma tissues was significantly lower than that of the adjacent tissues (P<0.01). The expression of GAS5 mRNA was related to tumor size, tumor number, lymph node metastasis, clinical TNM stage, alpha fetoprotein level, and tumor differentiation (P<0.05). Cox hazard model results showed that low expression of GAS5 mRNA was associated with poor prognosis (P<0.05).ConclusionGAS5 mRNA is expected to be a diagnostic and prognostic marker for patients with hepatocellular carcinoma.

    Release date:2019-03-18 05:29 Export PDF Favorites Scan
  • The long non-coding RNA MALAT1 is upregulated in myocardial tissue exposed to intermittent hypoxia

    ObjectiveBy detecting the expression of the long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in myocardial tissue under different hypoxia patterns, to explore the possible mechanism of obstructive sleep apnea (OSA)-induced cardiovascular diseases.MethodsSD rats were randomly and equally divided into 4 groups namely a normal (N) group, a continuous hypoxia (CH) group, an intermittent hypoxia (IH) group and an intermittent hypoxia with hypercapnia (IHH) group, and were treated for 1, 2, and 3 weeks. The expression of MALAT1 and associated immune factors of the myocardial tissue were examined by qRT-PCR.ResultsAn elevation without significance was observed in those three hypoxia groups in contrast with N group after 1 week’s treatment. However, in 2 and 3 weeks’ groups, the mRNA expression of MALAT1 was significantly higher in IHH group than the other three groups (all P<0.01), while there was no significant difference among IH, CH or N groups despite an increasing tendency in IH and CH groups against N group were observed. Additionally, the expressions of hypoxia inducible factor-1α (P<0.05), Toll-like receptor 4 (P<0.01) and interleukin-6 (P<0.05) mRNA were also increased significantly in IHH group compared with IH, CH and IHH groups in 3 weeks’ treatment respectively, which were coordinated with the change of MALAT1 mRNA.ConclusionsThe expression of MALAT1 in myocardial tissue is elevated by intermittent hypoxia with hypercapnia, and the tendency is similar with hypoxia-induced inflammation factors. These findings indicate that MALAT1 is probably a regulatory factor of OSA induced myocardial immune injury.

    Release date:2018-07-23 03:28 Export PDF Favorites Scan
  • Integrated analysis of a gene correlation network identifies critical regulation of fibrosis by lncRNAs and TFs in idiopathic pulmonary fibrosis

    ObjectiveTo investigate the key long non-coding RNAs (lncRNAs) and transcription factors (TFs) in idiopathic pulmonary fibrosis (IPF) by Bioinformatics analysis.MethodsBioinformatics analysis of three gene expression profiles from the Gene Expression Omnibus dataset (GSE2052, GSE44723, and GSE24206), including 42 IPF and 21 normal lung tissues, was performed in this study. Subsequently, differentially expressed genes (DEGs) were filtered, and key genes involved in signaling pathways and the DEG-associated protein-protein interaction network (PPI) were further analyzed. The filtered genes expression was determined by real-time quantitative polymerase chain reaction analysis.ResultsA total of 8483 aberrantly expressed genes were screened, and 29 overlapping genes were identified among these three datasets. A significant enrichment analysis of DEG-associated functions and pathways was further performed. A total of 18 modules were obtained from the DEG PPI network, and most of the modules were involved in polyubiquitination, Golgi vesicle transport, endocytosis and so on. The key genes were obtained through hypergeometric testing, and most of the corresponding genes were closely associated with ubiquitin-mediated proteolysis, the spliceosome, and the cell cycle. These differential expressed genes, such as lncMALAT1, E2F1 and YBX1, were detected in the peripheral blood of IPF patients when compared with those normal control subjects.ConclusionlncMALAT1, E2F1 and YBX1 might be possible regulators for the pathogenesis of idiopathic pulmonary fibrosis.

    Release date:2021-01-26 05:01 Export PDF Favorites Scan
  • Advancement of long non-coding RNA in papillary thyroid carcinoma

    Objective The aim of this study is to review the association between long non-coding RNA (lncRNA) and papillary thyroid carcinoma (PTC). Method The relevant literatures about lncRNA associated with PTC were retrospectively analyzed and summarized. Results The expression levels of noncoding RNA associated with MAP kinase pathway and growth arrest (NAMA), PTC susceptibility candidate 3 (PTCSC3), BRAF activated non-coding RNA (BANCR), maternally expressed gene 3 (MEG3), NONHSAT037832, and GAS8-AS1 in PTC tissues were significantly lower than those in non-thyroid carcinoma tissues. The expression levels of ENST00000537266, ENST00000426615, XLOC051122, XLOC006074, HOX transcript antisense RNA (HOTAIR), antisense noncoding RNA in the INK4 locus (ANRIL), and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in PTC tissues were upregulated in PTC tissues, comparing with the non-thyroid carcinoma tissues. These lncRNAs were possibly involved in cell proliferation, migration, and apoptosis of PTC. Conclusion LncRNAs may provide new insights into the molecular mechanism and gene-targeted therapy of PTC and become new molecular marker for the diagnosis of PTC.

    Release date:2017-08-11 04:10 Export PDF Favorites Scan
  • Recent advances of related biomarkers in early diagnosis of gastric cancer

    ObjectiveTo understand the research progress of related biomarkers in early diagnosis of gastric cancer in recent years.MethodThe domestic and foregin literatures on studies of biomarkers of early diagnosis of gastric cancer in recent years were reviewed.ResultsAt present, the sensitivity and specificity of serum tumor biomarkers of gastric cancer such as CEA and CA19-9 were lower, so the molecular markers that could predict, screen, and diagnose gastric cancer in the early stage were further explored. The recent studies suggested that microRNAs, long non-coding RNAs, circular RNAs, exosome, etc. molecular markers in early diagnosis of gastric cancer had better prospects of clinilal application.ConclusionWith the continuous development of molecular biology technology, the values of microRNAs, long non-coding RNAs, circular RNAs, DNA, etc. in early diagnosis of gastric cancer would be further explored.

    Release date:2021-09-06 03:43 Export PDF Favorites Scan
  • Comprehensive analysis of the aberrantly expressed profiles of lncRNAs, miRNAs and the regulation network of the associated ceRNAs in clear cell renal cell carcinoma

    To evaluate the differential expression profiles of the lncRNAs, miRNAs, mRNAs and ceRNAs, and their implication in the prognosis in clear cell renal cell carcinoma (CCRCC), the large sample genomics analysis technologies were used in this study. The RNA and miRNA sequencing data of CCRCC were obtained from The Cancer Genome Atlas (TCGA) database, and R software was used for gene expression analysis and survival analysis. Cytoscape software was used to construct the ceRNA network. The results showed that a total of 1 570 lncRNAs, 54 miRNAs, and 17 mRNAs were differentially expressed in CCRCC, and most of their expression levels were up-regulated (false discovery rate < 0.01 and absolute log fold change > 2). The ceRNA regulatory network showed the interaction between 89 differentially expressed lncRNAs and 9 differentially expressed miRNAs. Further survival analysis revealed that 38 lncRNAs (including COL18A1-AS1, TCL6, LINC00475, UCA1, WT1-AS, HOTTIP, PVT1, etc.) and 2 miRNAs (including miR-21 and miR-155) were correlated with the overall survival time of CCRCC (P < 0.05). Together, this study provided us several new evidences for the targeted therapy and prognosis assessment of CCRCC.

    Release date:2019-04-15 05:31 Export PDF Favorites Scan
  • Developmental mechanism for calcific aortic valve disease

    Calcific aortic valve disease has been the most common heart valve disorder in western world, accompanying with the increase of morbidity in our country year by year. Several molecules and mechanisms are involved in the progression of aortic valve calcification, which intensify the complexity of this pathological process. It is known that inflammation, a key factor in many diseases, has its own role in the development of aortic valve calcification. It has been demonstrated that inflammation, one of the most important participants in this disorder, which may accelerate the local lesions in aortic valve via promoting the expression of osteogenic differentiation of associated factors or decreasing the level of protective molecules. Dyslipidemia is a traditional risk factor of cardiovascular events. However, it may induce or enhance the inflammatory response whereby facilitates the calcific lesions in aortic valve. Recently, several researches have illustrated that non-coding RNAs, a stimulative factor in the progression of malignant tumor, might play a role in the development of aortic valve calcification. MiRNA and lncRNA, the non-coding RNAs which regulate the expression of genes involved in inflammatory and osteogenic differentiation, are undeniable regulators of aortic valve calcification.

    Release date:2018-01-31 02:46 Export PDF Favorites Scan
  • Research progress of long non-coding RNA CCAT1 and gastric cancer

    ObjectiveTo understand the function of long non-coding RNA (lncRNA) colon cancer associated transcript-1 (CCAT1) and summarize its relationship with gastric cancer.MethodThe published literatures on the studies of lncRNA CCAT1 function and its relationship with gastric cancer were reviewed and analyzed.ResultsThe lncRNA CCAT1 exerted the negative regulation on the genes by binding to microRNAs (miR) as a competitive endogenous RNA, mediating chromatin circulation between the c-MYC promoter and its upstream enhancer, and promoted the expression of c-MYC gene. The recent studies had found that the CCAT1 could bind to the miR-219-1 and miR-490, thereby promoting the progress of gastric cancer. The expression of lncRNA CCAT1 in the gastric cancer tissues increased, which was obviously different from that in the paracancer tissues and normal tissues. The high expression of lncRNA CCAT1 was related to the tumor size, lymphatic metastasis and TNM stage.ConclusionsThe specific mechanism, intracellular signal transduction pathway and interaction mechanism between CCAT1 and other molecules involved in the progress of gastric cancer still need to be further explored. With the in-depth study of lncRNA, especially CCAT1, it may provide a broader prospect for the diagnosis and treatment of gastric cancer as a target of CCAT1.

    Release date:2020-09-23 05:27 Export PDF Favorites Scan
  • Study on adsorption of microRNA-124 by long chain non-coding RNA MALAT1 regulates osteogenic differentiation of mesenchymal stem cells

    ObjectiveTo investigate the regulatory effect of long chain non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) adsorbing microRNA-124 (miR-124) on osteogenic differentiation of mesenchymal stem cells (MSCs).MethodsC3H10T1/2 cells derived from mouse embryos were cultured in vitro, then randomly divided into control group (group A), lncRNA MALAT1 no-load plasmid group (group B), lncRNA MALAT1 overexpression plasmid group (group C), lncRNA MALAT1 small interfering RNA (siRNA) group (group D), and lncRNA MALAT1 siRNA negative control group (group E). The cells were transfected into plasmids and siRNA, then induced to differentiate into osteoblasts. Alkaline phosphatase (ALP) and alizarin red staining were used to detect the osteogenic differentiation of cells in each group, real-time fluorescence quantitative (qRT-PCR) analysis was used to detect the expressions of lncRNA MALAT, miR-124, and osteogenesis-related genes such as Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteocalcin (OCN) in each group. Double luciferase reporter gene was used to detect the targeting regulation of lncRNA MALAT1 to miR-124.ResultsThe relative contents of ALP positive cells, mineralized nodule, and the relative mRNA expressions of lncRNA MALAT1, Runx2, OPN, and OCN in group C were significantly higher than those in other groups (P<0.05), while in group D significantly lower than in other groups (P<0.05); the relative expression of miR-124 in group C was significantly lower than that in other groups(P<0.05), while in group D significantly higher than in other groups (P<0.05). There was no significant difference in these indexes between groups A, B, and E (P>0.05). The results of double luciferase reporter gene assay showed that lncRNA MALAT1 targeting down-regulated the expression of miR-124.ConclusionLncRNA MALAT1 can targeting down-regulate the expression of miR-124 and promote the osteogenic differentiation of MSCs.

    Release date:2020-02-20 05:18 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content