Low-intensity ultrasound stimulation of the retina has the ability to modulate neural activity in the primary visual cortex (V1), however, it is currently unclear how different intensities and durations of ultrasonic stimulation of the retina modulate neural activity in V1. In this paper, we recorded local field potential (LFP) signals in the V1 brain region of mice under different ultrasound intensities and different stimulation times. The amplitude of LFP corresponding to 1 s before ultrasound stimulation to 2 s after stimulation (–1–2 s) was analyzed, including the power and sample entropy of delta, theta, alpha beta, and low gamma frequency bands. The experimental results showed that, as the stimulation intensity increased, the peak value of the LFP in the visual cortex showed a linear upward trend; the power in the delta and theta frequency bands showed a linear upward trend, and the sample entropy showed a linear downward trend. With increases of stimulation duration, the peak value of the LFP in the visual cortex showed an upward trend, and the upward trend gradually weakened; the power in the delta frequency band showed an upward trend, the sample entropy showed a linear upward trend, and the sample entropy in the theta frequency band showed a downward trend. The results show that low-intensity ultrasonic stimulation of the retina has a significant modulatory effect on neural activity in the visual cortex. The study provides insights into the mechanisms by which ultrasonic stimulation regulates visual system function. Furthermore, it clarifies the patterns of parameter selection, facilitating the development of personalized multi-parameter modulation for the treatment of visual neural degeneration, retinal disorders and related research areas.