ObjectiveTo analyze the influencing factors of acute exacerbation readmission in elderly patients with chronic obstructive pulmonary disease (COPD) within 30 days, construct and validate the risk prediction model.MethodsA total of 1120 elderly patients with COPD in the respiratory department of 13 general hospitals in Ningxia from April 2019 to August 2020 were selected by convenience sampling method and followed up until 30 days after discharge. According to the time of filling in the questionnaire, 784 patients who entered the study first served as the modeling group, and 336 patients who entered the study later served as the validation group to verify the prediction effect of the model.ResultsEducation level, smoking status, number of acute exacerbations of COPD hospitalizations in the past 1 year, regular use of medication, rehabilitation and exercise, nutritional status and seasonal factors were the influencing factors of patients’ readmission to hospital. The risk prediction model was constructed: Z=–8.225–0.310×assignment of education level+0.564×assignment of smoking status+0.873×assignment of number of acute exacerbations of COPD hospitalizations in the past 1 year+0.779×assignment of regular use of medication+0.617×assignment of rehabilitation and exercise +0.970×assignment of nutritional status+assignment of seasonal factors [1.170×spring (0, 1)+0.793×autumn (0, 1)+1.488×winter (0, 1)]. The area under ROC curve was 0.746, the sensitivity was 75.90%, and the specificity was 64.30%. Hosmer-Lemeshow test showed that P=0.278. Results of model validation showed that the sensitivity, the specificity and the accuracy were 69.44%, 85.71% and 81.56%, respectively.ConclusionsEducation level, smoking status, number of acute exacerbations of COPD hospitalizations in the past 1 year, regular use of medication, rehabilitation and exercise, nutritional status and seasonal factors are the influencing factors of patients’ readmission to hospital. The risk prediction model is constructed based on these factor. This model has good prediction effect, can provide reference for the medical staff to take preventive treatment and nursing measures for high-risk patients.
Objective To explore the risk factors of chronic postoperative inguinal pain (CPIP) after transabdominal preperitoneal hernia repair (TAPP), establish and verify the risk prediction model, and then evaluate the prediction effectiveness of the model. Methods The clinical data of 362 patients who received TAPP surgery was retrospectively analyzed and divided into model group (n=300) and validation group (n=62). The risk factors of CPIP in the model group were screened by univariate analysis and multivariate logistic regression analysis, and the risk prediction model was established and tested. Results The incidence of CPIP at 6 months after operation was 27.9% (101/362). Univariate analysis showed that gender (χ2= 12.055, P=0.001), age (t=–4.566, P<0.01), preoperative pain (χ2=44.686, P<0.01) and early pain at 1 week after operation (χ2=150.795, P<0.01) were related to CPIP. Multivariate logistic regression analysis showed that gender, age, preoperative pain, early pain at 1 week after operation, and history of lower abdominal surgery were independent risk predictors of CPIP. The area under curve (AUC) of the receiver operating characteristic (ROC) of the risk prediction model was calculated to be 0.933 [95%CI (0.898, 0.967)], and the optimal cut-off value was 0.129, while corresponding specificity and sensitivity were 87.6% and 91.5% respectively. The prediction accuracy, specificity and sensitivity of the model were 91.9% (57/62), 90.7% and 94.7%, respectively when the validation group data were substituted into the prediction model. Conclusion Female, age≤64 years old, preoperative pain, early pain at 1 week after operation and without history of lower abdominal surgery are independent risk factors for the incidence of CPIP after TAPP, and the risk prediction model established on this basis has good predictive efficacy, which can further guide the clinical practice.
Objective To construct a risk prediction score model for serious adverse event (SAE) after cardiac catheterization in patients with adult congenital heart disease (ACHD) and pulmonary hypertension (PH) and verify its predictive effect. Methods The patients with PH who underwent cardiac catheterization in Wuhan Asian Heart Hospital Affiliated to Wuhan University of Science and Technology from January 2018 to January 2022 were retrospectively collected. The patients were randomly divided into a model group and a validation group according to the order of admission. The model group was divided into a SAE group and a non-SAE group according to whether SAE occurred after the catheterization. The data of the two groups were compared, and the risk prediction score model was established according to the results of multivariate logistic regression analysis. The discrimination and calibration of the model were evaluated using the area under the receiver operating characteristic (ROC) curve and the Hosmer-Lemeshow test, respectively. Results A total of 758 patients were enrolled, including 240 (31.7%) males and 518 (68.3%) females, with a mean age of 43.1 (18.0-81.0) years. There were 530 patients in the model group (47 patients in the SAE group and 483 patients in the non-SAE group) and 228 patients in the validation group. Univariate analysis showed statistical differences in age, smoking history, valvular disease history, heart failure history, N-terminal pro-B-type natriuretic peptide, and other factors between the SAE and non-SAE groups (P<0.05). Multivariate analysis showed that age≥50 years, history of heart failure, moderate to severe congenital heart disease, moderate to severe PH, cardiac catheterization and treatment, surgical general anesthesia, and N-terminal pro-B-type natriuretic peptide≥126.65 pg/mL were risk factors for SAE after cardiac catheterization for ACHD-PH patients (P<0.05). The risk prediction score model had a total score of 0-139 points and patients who had a score>50 points were high-risk patients. Model validation results showed an area under the ROC curve of 0.937 (95%CI 0.897-0.976). Hosmer-Lemeshow goodness-of-fit test: χ2=3.847, P=0.797. Conclusion Age≥50 years, history of heart failure, moderate to severe congenital heart disease, moderate to severe PH, cardiac catheterization and treatment, general anesthesia for surgery, and N-terminal pro-B-type natriuretic peptide≥126.65 pg/mL were risk factors for SAE after cardiac catheterization for ACHD-PH patients. The risk prediction model based on these factors has a high predictive value and can be applied to the risk assessment of SAE after interventional therapy in ACHD-PH patients to help clinicians perform early intervention.
Objective To explore the risk factors for long-term death of patients with acute myocardial infarction (AMI) and reduced left ventricular ejection fraction (LVEF), and develop and validate a prediction model for long-term death. Methods This retrospective cohort study included 1013 patients diagnosed with AMI and reduced LVEF in West China Hospital of Sichuan University between January 2010 and June 2019. Using the RAND function of Excel software, patients were randomly divided into three groups, two of which were combined for the purpose of establishing the model, and the third group was used for validation of the model. The endpoint of the study was all-cause mortality, and the follow-up was until January 20th, 2021. Cox proportional hazard model was used to evaluate the risk factors affecting the long-term death, and then a prediction model based on those risk factors was established and validated. Results During a median follow-up of 1377 days, 296 patients died. Multivariate Cox regression analysis showed that age≥65 years [hazard ratio (HR)=1.842, 95% confidence interval (CI) (1.067, 3.179), P=0.028], Killip class≥Ⅲ[HR=1.941, 95%CI (1.188, 3.170), P=0.008], N-terminal pro-brain natriuretic peptide≥5598 pg/mL [HR=2.122, 95%CI (1.228, 3.665), P=0.007], no percutaneous coronary intervention [HR=2.181, 95%CI (1.351, 3.524), P=0.001], no use of statins [HR=2.441, 95%CI (1.338, 4.454), P=0.004], and no use of β-blockers [HR=1.671, 95%CI (1.026, 2.720), P=0.039] were independent risk factors for long-term death. The prediction model was established and patients were divided into three risk groups according to the total score, namely low-risk group (0-2), medium-risk group (4-6), and high-risk group (8-12). The results of receiver operating characteristic curve [area under curve (AUC)=0.724, 95%CI (0.680, 0.767), P<0.001], Hosmer-Lemeshow test (P=0.108), and Kaplan-Meier survival curve (P<0.001) showed that the prediction model had an efficient prediction ability, and a strong ability in discriminating different groups. The model was also shown to be valid in the validation group [AUC=0.758, 95%CI (0.703, 0.813), P<0.001]. Conclusions In patients with AMI and reduced LVEF, age≥65 years, Killip class≥Ⅲ, N-terminal pro-brain natriuretic peptide≥5598 pg/mL, no percutaneous coronary intervention, no use of statins, and no use of β-blockers are independent risk factors for long-term death. The developed risk prediction model based on these risk factors has a strong prediction ability.
Acute kidney injury (AKI) is a complication with high morbidity and mortality after cardiac surgery. In order to predict the incidence of AKI after cardiac surgery, many risk prediction models have been established worldwide. We made a detailed introduction to the composing features, clinical application and predictive capability of 14 commonly used models. Among the 14 risk prediction models, age, congestive heart failure, hypertension, left ventricular ejection fraction, diabetes, cardiac valve surgery, coronary artery bypass grafting (CABG) combined with cardiac valve surgery, emergency surgery, preoperative creatinine, preoperative estimated glomerular filtration rate (eGFR), preoperative New York Heart Association (NYHA) score>Ⅱ, previous cardiac surgery, cadiopulmonary bypass (CPB) time and low cardiac output syndrome (LCOS) are included in many risks prediction models (>3 times). In comparison to Mehta and SRI models, Cleveland risk prediction model shows the best discrimination for the prediction of renal replacement therapy (RRT)-AKI and AKI in the European. However, in Chinese population, the predictive ability of the above three risk prediction models for RRT-AKI and AKI is poor.
Objective To investigate the key risk factors for low anterior resection syndrome (LARS) within 6 months after rectal cancer surgery and to construct a risk prediction model based on the random forest algorithm, providing a reference for early clinical intervention. Methods A retrospective study was conducted on patients who underwent rectal cancer surgery at the West China Hospital of Sichuan University from January 2020 to August 2021. A prediction model for the occurrence of LARS within 6 months after rectal cancer surgery was constructed using the random forest algorithm. The dataset was divided into a training set and a test set in an 8∶2 ratio. The model performance was evaluated by accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), Brier score, and decision curve analysis (DCA). Results A total of 394 patients were enrolled. Among the 394 patients, 106 developed LARS within 6 months after surgery, with an incidence rate of 26.9%. According to the importance ranking in the random forest algorithm, the key predictive factors were: distance from the inferior tumor margin to the dentate line, body mass index (BMI), tumor size, time to first postoperative flatus, operation time, age, neoadjuvant therapy, and TNM stage. The prediction model constructed using these key factors achieved the accuracy of 73.4%, sensitivity of 75.0%, specificity of 72.7%, AUC (95% confidence interval) of 0.801 (0.685, 0.916), and the Brier score of 0.198. DCA showed that the model provided favorable clinical benefit when the threshold probability was between 25% and 64%. Conclusions The results of this study suggest that patients with a shorter distance from the tumor to the dentate line, higher BMI, and larger tumor size are at higher risk of developing LARS. The risk prediction model constructed in this study demonstrates a good predictive performance and may provide a useful reference for early identification of high-risk patients after rectal cancer surgery.
ObjectiveTo systematically evaluate the risk prediction model of anastomotic fistula after radical resection of esophageal cancer, and to provide objective basis for selecting a suitable model. MethodsA comprehensive search was conducted on Chinese and English databases including CNKI, Wanfang, VIP, CBM, PubMed, EMbase, Web of Science, The Cochrane Library for relevant studies on the risk prediction model of anastomotic fistula after radical resection of esophageal cancer from inception to April 30, 2023. Two researchers independently screened literatures and extracted data information. PROBAST tool was used to assess the risk of bias and applicability of included literatures. Meta-analysis was performed on the predictive value of common predictors in the model with RevMan 5.3 software. ResultsA total of 18 studies were included, including 11 Chinese literatures and 7 English literatures. The area under the curve (AUC) of the prediction models ranged from 0.68 to 0.954, and the AUC of 10 models was >0.8, indicating that the prediction performance was good, but the risk of bias in the included studies was high, mainly in the field of research design and data analysis. The results of the meta-analysis on common predictors showed that age, history of hypertension, history of diabetes, C-reactive protein, history of preoperative chemotherapy, hypoproteinemia, peripheral vascular disease, pulmonary infection, and calcification of gastric omental vascular branches are effective predictors for the occurrence of anastomotic leakage after radical surgery for esophageal cancer (P<0.05). ConclusionThe study on the risk prediction model of anastomotic fistula after radical resection of esophageal cancer is still in the development stage. Future studies can refer to the common predictors summarized by this study, and select appropriate methods to develop and verify the anastomotic fistula prediction model in combination with clinical practice, so as to provide targeted preventive measures for patients with high-risk anastomotic fistula as soon as possible.
Objective To explore the risk factors of female’s breast cancer in secondary cities of the west and establish a risk prediction model to identify high-risk groups, and provide the basis for the primary and secondary preve-ntion of breast cancer. Methods Random sampling (method of random digits table) 1 700 women in secondary cities of the west (including 1 020 outpatient cases and 680 physical examination cases) were routinely accept the questionnaire survey. Sixty-two patients were confirmed breast cancer with pathologically. Based on the X-image of the mammary gland patients and questionnaire survey to put mammographic density which classificated into high- and low-density groups. The relationships between the mammographic density, age, body mass index (BMI), family history of breast cancer, socio-economic status (SES), lifestyle, reproductive fertility situation, and breast cancer were analyzed, then a risk prediction model of breast cancer which fitting related risk factors was established. Results Univariate analysis showed that risk factors for breast cancer were age (P=0.006), BMI (P=0.007), age at menarche (P=0.039), occupation (P=0.001), domicile place (P=0.000), educational level (P=0.001), health status compared to the previous year (P=0.046), age at first birth (P=0.014), whether menopause (P=0.003), and age at menopause (P=0.006). The unconditional logistic regr-ession analysis showed that the significant risk factors were age (P=0.003), age at first birth (P=0.000), occupation (P=0.010), and domicile place (P=0.000), and the protective factor was age at menarche (P=0.000). The initially established risk prediction model in the region which fitting related risk factors was y=-5.557+0.042x1-0.375x2+1.206x3+0.509x4+2.135x5. The fitting coefficient (R square)=0.170, it could reflect 17% of the actual situation. Conclusions The breast cancer risk prediction model which established by using related risk factors analysis and epidemiological investigation could guide the future clinical work,but there is still need the validation studies of large populations for the model.
ObjectiveTo systematically review the research status of risk prediction models for cognitive impairment in patients with T2DM. MethodsThe CNKI, WanFang Data, VIP, CBM, PubMed, Embase, Web of Science, Cochrane Library databases and clinical trial registration platform were electronically searched to collect relevant literature on risk prediction models for cognitive impairment in patients with T2DM from inception to February 13th, 2025. Two researchers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, and then qualitative description and meta-analysis was performed. ResultsA total of 20 studies were included, involving 25 risk prediction models. In terms of the risk of bias, 20 studies were considered as high risk. With regards to applicability, 20 studies were high applicability. The pooled area under the curve (AUC) for modeling set was 0.83 (95%CI 0.79 to 0.88) and for the validation set was 0.83 (95%CI 0.79 to 0.87). It suggested that the model had good discrimination ability. The most common predictors included age, education level, duration of diabetes and depression. ConclusionThe overall performance of the risk prediction model for cognitive impairment in patients with T2DM is good, but the quality of the model needs to be improved.