This paper aims to utilize the intersecting cortical model (ICM), which imitates the biological neural cells sync pulse, to preliminary research about the contour integration mechanism and the selection of attention. The idea of "Excitement-Inhibition" oscillation is introduced into the ICM, and meanwhile, the target contour chain code is used as the high-level feedback to control the input. Thus, we propose the Excitation-Inhibition-ICM which contains both the BUTTON-UP and the TOP-DOWN mechanism. The experimental results showed that the proposed model could effectively suppress noise to make the smooth edge synchronization issue, thus completing the process of BOTTOM-UP. The introduction of the target contour chain code can obtain consistent target outline with the input target chain code, but other targets cannot form a closed contour since they do not match with the input target chain code, so as to realize the TOP-DOWN mechanism. The results proved that our proposed model could imitate the contour integration mechanism and the selection of attention of the visual cortex V1.
Based on the capacitance coupling principle, we studied a capacitive way of non-contact electrocardiogram (ECG) monitoring, making it possible to obtain ECG on the condition that a patient is habilimented. Conductive fabric with a good electrical conductivity was used as electrodes. The electrodes fixed on a bed sheet is presented in this paper. A capacitance comes into being as long as the body gets close to the surface of electrode, sandwiching the cotton cushion, which acts as dielectric. The surface potential generated by heart is coupled to electrodes through the capacitance. After being processed, the signal is suitable for monitoring. The test results show that 93.5% of R wave could be detected for 9 volunteers and ECG with good signal quality could be acquired for 2 burnt patients. Non-contact ECG is harmless to skin, and it has advantages for those patients to whom stickup electrodes are not suitable. On the other hand, it is convenient to use and good for permanent monitoring.
From December 2022 to January 2023, 4 lung transplant recipients (3 males and 1 female, aged 52-60 years, all received transplantation less than 1 year) were hospitalized in the Department of Thoracic Surgery of the First Affiliated Hospital of Xi'an Jiaotong University due to COVID-19 after surgery. The clinical manifestations were mostly characterized by elevated body temperature accompanied by shortness of breath, and indicators such as heart rate, oxygen saturation, and oxygenation index could reflect the severity of the condition. The therapy was timely adjusted to immunosuppressive drugs, upgraded oxygen therapy, anti-bacterial and anti-fungal therapy, prone ventilation, general treatment, and anticoagulant therapy, depending on the situation. Finally, 3 patients were cured and discharged from hospital, and 1 died.
ObjectiveTo explore the method for establishing a pig left lung orthotopic transplantation model. MethodsDetailed surgical procedures, including animal anesthesia, tracheal intubation, donor lung retrieval, and recipient transplantation, were thoroughly reported. By examining the histological morphology and blood gas analysis of the transplanted lung 2 hours after reperfusion, the histological changes and function of the transplanted lung were assessed. ResultsThis method was applied to four male Yorkshire pigs with an average weight of (40.0 ±2.5) kg for left lung in situ transplantation, effectively simulating conditions relevant to human lung transplantation. Two hours after the transplantation, arterial blood gas analysis showed PaO2 was 155.4-178.6 mm Hg, PaCO2 was 53.1-62.4 mm Hg, and the oxygenation index was 310.8-357.2 mm Hg. Hematoxylin and eosin staining indicated a low degree of pulmonary edema and minimal cellular infiltration. ConclusionThe pig left lung orthotopic transplantation model possesses strong operability and stability. Researchers can replicate this model according to the described methods and further conduct basic research and explore clinical translational applications.