Objective To expolre the factors which affect the size of diabetic,macular fobeal avascss scular zone(FAZ). Methods Making ten years of duration of diabetes a limit,79 nonproliferative and early proliferative diabetic patients were divided into 2 groups.Diabetic retinopathy severity level was diveided into 4 stages,and the macular edema was subdivided into focal、diffuse and cystoid according to fluorescein leakage of foveomacular region.All patients were measured FAZ with Heidelberg scanning laser fluoresceion angiography system and then compaired the size of FAZ of patients with different duration of diabetes、diabetic retinopathy severity level and macular edema status.The results were performed analysis of variance and t test. ResultsThe study shown the size of FAZ was not directly related to the duration of diabetes(t=1.3854,Pgt;0.1);There were significant differences about the size of FAZ of patients with different diabetic retinopathy severity level(F=7.6251,P<0.01)and macular edema status(F=5.4369,P<0.01). Conclusion The size of FAZ was significantly increased in diabetic patients.It was enlarged with the development of diabetic retinopathy severity level,but it was not related to duration of diabetes. (Chin J Ocul Fundus Dis,2000,16:155-156)
Objective To explore the correlation between retinal extracellular edema and vitreous contraction in rabbits. Methods Seventeen pigmented rabbit models with retinal vein occlusion (RVO)was set up by laser photocoagulation. Retinal vascularity area was pathologically examined 1 month later.The vitreous gellength under the gravity condition and the percentage of its weight in the rabbits with extraeellular edema was observed. The mechanisms were investigated by Western immunoblotting of type II collagen.Results Extracellular edema was found in 13 experimental eyes 1 month after the formation of RVO (76.5~) with contracted vitreous gel and released watery liquid, and the a component of type II collagen was cross-linked together to form high-molecular-weight components of 1] and 7, which weakened the stability of collagen net structure.Conclusions Vitreous contraction and retinal extracellular edemawere correlated. The main reason may be the cross-links of vitreous collagen that damages the stability of collagen structure. (Chin J Ocul Fundus Dis,2004,20:2-32)
Objective To evaluate the efficacy and safety of dexamethasone intravitreal implant (Ozurdex) in the treatment of macular edema (ME) secondary to retinal vein occlusion (RVO). Methods Thirty-nine patients (39 eyes) with ME secondary to RVO were enrolles in this study. Of the patients, 27 were male and 12 were female. The mean age was (41.9±16.3) years. The mean course of disease was (5.0±5.3) months. The best corrected visual acuity (BCVA), intraocular pressure and optical coherence tomography (OCT) were performed. BCVA was measured by Early Treatment Diabetic Retinopathy Study charts. Central macular thickness (CMT) was measured by OCT. The mean BCVA was (13.4±15.3) letters. The mean intraocular pressure (IOP) was (14.1±2.8) mmHg (1 mmHg=0.133 kPa). The mean CMT was (876.1±437.9) μm. Of the 39 eyes, 33 were central RVO, 6 were branch RVO. Patients were categorized into ischemic (18 eyes)/non-ischemic (21 eyes) groups and previous treatment (22 eyes)/treatment naïve (17 eyes) groups. All eyes underwent intravitreal 0.7 mg Ozurdex injections. BCVA, IOP and CMT were assessed at 1, 2, 3, 6, 9, 12 months after injection. Three months after injection, intravitreal injections of Ozurdex, triamcinolone acetonide or ranibizumab could be considered for patients with ME recurrence or poor treatment effects. Change of BCVA, IOP and CMT were evaluated with paired t test. The presence of ocular and systemic adverse events were assessed. Results BCVA, IOP significantly increased and CMT significantly decreased at 1 month after injection compared to baseline in all groups (t=3.70, 3.69, 4.32, 3.08, 4.25, 6.09, 6.25, 4.02, 5.49, 8.18, 6.54, 5.73; P<0.05). Two months after injection, change of BCVA, IOP and CMT was most significant (t=4.93, 6.80, 6.71, 5.53, 4.97, 5.89, 5.13, 7.68, 7.31, 8.67, 8.31, 5.82; P<0.05). Twelve months after injection, there was no statistical difference regarding BCVA of ischemic RVO group and previous treatment group, compared to baseline (t=1.86, 0.67; P>0.05); BCVA of non-ischemic RVO group and treatment naïve group significantly increased compared to baseline (t=2.27, 2.30; P<0.05); there was no statistical difference regarding IOP in all groups (t=0.30, 0.13, 0.64, 1.53; P>0.05);however, CMT significantly decreased in all groups (t=4.60, 3.26, 3.00, 4.87; P<0.05). Twenty-seven eyes (69.2%) experiences ME recurrence (4.5±1.5) months after injection. Most common side-effect was secondary glaucoma. 41.0% eyes had IOP more than 25 mmHg, most of which were lowered to normal range with use of topical IOP lowering drugs. Four eyes (10.3%) presented with significant cataract progression and needed surgical treatment, all were central RVO eyes. No serious ocular or systemic adverse events such as vitreous hemorrhage, retinal detachment or endophthalmitis were noted. Conclusions Intravitreal injection of Ozurdex for patients with ME secondary to RVO is effective in increasing BCVA and lowering CMT in the first few months. Significant treatment effect could be seen at 1 month after injection and was most significant at 2 months after injection. The long-term vision of eyes in non-ischemic RVO group and treatment naïve group are better. 69.2% eyes experience ME recurrence at 4 months after injection. Short term adverse events were mostly secondary glaucoma and long term adverse events are mostly cataract progression.
ObjectiveTo observe the changes of macular microvascular structure in eyes with macular edema secondary to branch retinal vein occlusion (BRVO-ME) after intravitreal injection of conbercept and analyze its relationship with visual function and central retinal thickness (CRT).MethodsA prospective clinical study. From July 2018 to June 2019, 21 eyes of 21 patients with unilateral temporal BRVO-ME diagnosed in the Department of Ophthalmology of Peking Union Medical College Hospital were included in the study. Among them, there were 14 eyes of 14 males and 7 eyes of 7 females; the average age was 58.0±8.3 years. There were 13 eyes and 8 eyes with occlusion of the superior temporal and inferior temporal branches of the retinal vein, respectively. The affected area was defined as the side of the venous obstruction. All the affected eyes underwent best-corrected visual acuity (BCVA) and optical coherence tomography angiography (OCTA) examination. The BCVA was tested using the international standard logarithmic visual acuity chart, which was converted into the logarithmic minimum angle of resolution (logMAR) visual acuity during statistical analysis. All the eyes were treated with intravitreal injection of conbercept once a month for 3 months, and then treated as needed. A 3 mm × 3 mm scan centered on fovea was obtained and the vascular density of superficial capillary plexus (SCP) and deep capillary plexus (DCP), fovea avascular zone (FAZ) area, perimeter of FAZ (PERIM), acircularity index (AI), foveal vascular density in a 300 μm wide region around FAZ (FD-300) and central retinal thickness (CRT) were measured. The follow-up time after treatment was 6 months. The vascular density and FAZ parameters were compared before and after treatment by paired t test. The correlations of BCVA, CRT and vascular density, FAZ area and the other parameters at 6 months after treatment were analyzed by linear regression analysis. ResultsBefore treatment, the logMAR BCVA of the eyes was 0.506±0.159, and the CRT was 375.4±81.3 μm; 6 months after treatment, the logMAR BCVA of the eyes was 0.294±0.097, and the CRT was 266.3±46.7 μm. There was a statistically significant difference of logMAR BCVA and CRT between the eyes before and after treatment (t=8.503, 9.843; P<0.05). There was no statistically significant difference in the overall vascular density of SCP and DCP before and 6 months after treatment (t=-0.091, -0.320; P>0.05). The foveal vascular density decreased, and the difference was statistically significant (t=8.801, 3.936; P<0.05). The vascular density of DCP of the affected area increased, and the difference was statistically significant (t=-2.198, P<0.05). Compared with those before treatment, the FAZ area and PERIM of the affected eyes had an increasing trend, while AI and FD-300 had a decreasing trend, and the differences were statistically significant (t=-18.071, -12.835, 2.555, 8.610; P<0.05). The linear regression analysis showed that BCVA and FAZ area 6 months after treatment have significant correlation (t=2.532, P=0.024). ConclusionCRT decreased and BCVA increased after intravitreal injection of conbercept in BRVO-ME eyes. After treatment, the foveal vascular density of SCP and DCP decreased while the vascular density of DCP of the affected area increased. The FAZ increased and the PERIM and AI decreased during follow-up. The BCVA was significantly correlated with the FAZ area 6 months after treatment.
Objective To observe the short-term effect of changing the sequence of PRP and MLP on the pre-proliferative or proliferative diabetic retinopathy patients with clinical significant macular edema (CSEM). Methods Sixty-three consecutive pre-proliferative or proliferative diabetic retinopathy outpatients (103 eyes) with clinical significant macular edema were selected and divided into two groups: 54 eyes in patients of group A accepted MLP one month prior to PRP and 49 eyes in patients of group B accepted the photocoagulative therapies in a contrary sequence. All the patients were followed up for 3 to 13 months and visual acuity. Light sensitivity of 5deg;macular threshold, and FFA were performed pre- and post-photocoagution. Results The improvement of visual acuity was found to be better in group A than that of group B (Plt;0.01) 2 months after the therapy, since then, there was no significant defference (Pgt;0.05) in both groups. Three and 4 months after the treatment, there was no significant difference in change of light sensitivity of 5deg;macular threshold in both groups. The macular leakages of 59 eyes, 32 ingroup A and 27 in group B, were well controlled. Conclusion Among the pre-proliferative or proliferative diabetic retinopathy patients with CSEM, visual acuity of those who accept MLP prior to PRP more rapidly than those who accept contrary sequence of photocoagulation, but the changing of therapeutic sequence might have no dramatic influence on light sensilivity of 5deg;macular threshold. (Chin J Ocul Fundus Dis,2000,16:150-152)
Objective To observe and analyze the risk factors of secondary intraocular hypertension in diabetic macular edema (DME) patients after treatment with dexamethasone vitreous cavity implant (DEX). MethodsA retrospective observational study. A total of 352 patients with type 2 diabetes mellitus (T2DM) secondary macular edema diagnosed by ophthalmic examination and treated with DEX in Department of Ophthalmology of Harbin 242 Hospital from January 2016 to March 2022 were included in the study. Among them, 221 were males and 131 were females, with the mean age of (55.56±8.09) years. There were 194 patients with disseminated macular edema, 158 patients with cystoid macular edema. All patients underwent vitreous cavity implantation of DEX. Intraocular pressure (IOP) was measured once a month for 3 months after treatment, with IOP over than 25 mm Hg (1 mm Hg=0.133 kPa) or higher than 10 mm Hg from baseline as secondary intraocular hypertension. The relevant clinical data were collected, and the risk factors of secondary intraocular hypertension in DME patients after DEX treatment were analyzed by binary logistic regression. ResultsAmong 352 patients, 116 patients (32.95%, 116/352) were in the intraocular hypertension. Among them, 29 patients (25.00%, 29/116), 69 patients (59.48%, 69/116) and 18 patients (15.52%, 18/116) occurred intraocular hypertension at 1, 2 and 3 months after treatment, respectively. Compared with the normal IOP group, the IOP in the intraocular hypertension group increased significantly at 1, 2 and 3 months after treatment, with statistical significance (t=10.771, 21.116, 13.761; P<0.001). Compared with normal IOP group, the patients in the intraocular hypertension group had younger age (t=6.967), longer duration of diabetes (t=5.950), longer axial length (AL) (t=14.989), higher proportion of DME grade 3 (Z=6.284), higher proportion of DEX implantation in pars plana (χ2=23.275), and higher HbA1c level (t=10.764), the differences were statistically significant (P<0.05). Logistic regression analysis showed that longer AL [odds ratio (OR)=1.428, 95% confidence interval (CI) 1.054-1.934], DEX implantation in pars plana (OR=1.358, 95%CI 1.063-1.735), and higher HbA1c (OR=1.702, 95%CI 1.225-2.366) were the risk factors for secondary intraocular hypertension in DME patients after DEX treatment (P<0.05), older age was a protective factor (OR=0.548, 95%CI 0.380-0.789, P<0.05). ConclusionsLong AL, DEX implantation in pars plana and high HbA1c are the risk factors for secondary intraocular hypertension after DEX treatment in DME patients, older age is a protective factor.
Objective To observe the visual acuity change in patients with different patterns of optical coherence tomography (OCT) of diabetic macular edema (DME) after intravitreal ranibizumab injection and/or laser photocoagulation. Methods A retrospective observational case series. Seventy patients (99 eyes) with DME were enrolled. Best-corrected visual acuity (BCVA) was evaluated using the international vision test chart, and then convert the result to the logarithm of the minimum angle of resolution (logMAR). According to the morphological characteristics of OCT, the DME was divided into 3 patterns, including diffuse macular edema (DRT), cystoid macular edema (CME) and serous neuroepithelial layer detachment. The average follow-up was (80.43±74.89) days. The patients were divided into 3 groups according to the different treatments, including intravitreal ranibizumab injection group (group A, 21 patients, 25 eyes), intravitreal ranibizumab injection and laser photocoagulation group (group B, 23 patients, 26 eyes), laser photocoagulation group (group C, 26 patients, 48 eyes). The changes of absolute BCVA (ABCVA) and improved visual acuity were compared between different treatment groups and different OCT patterns. ABCVA = logMAR BCVA before treatment-logMAR BCVA after treatment. Improvement more than 0.3 of logMAR value was considered as improved visual acuity. Results There was no significant difference in ABCVA between different treatment groups (F=0.050,P>0.05). The improved visual acuity in group A and B were great than group C (χ2=5.645, 6.301;P<0.05). In group A, B and C, there was no significant difference in ABCVA and improved visual acuity between different OCT patterns (P>0.05). Improved visual acuity of DRT and CME eyes were higher in group A&B (70.59% and 50.00%) than in group C (26.47% and 14.29%), the difference was statistically significant (χ2=5.075, 4.453;P<0.05). Conclusions There is no obvious change of visual acuity in patients with different OCT patterns of DME after the same treatment by intravitreal ranibizumab injection and/or laser photocoagulation. The improved visual acuity is not consistent in same OCT patterns after different treatment.