ObjectiveTo identify the expression functions of human NF-κBp65 nuclear localization signals' deletion mutant plasmids(namely pcDNA3.1(+)-NF-κBp65ΔNLS, NF-κBp65ΔNLS, for short) and the changes of proliferation, migration and adhesion ability of A549 lung cancer cells with low expression of NF-κBp65 (namely A549/NF-κBp65 shRNA cells). MethodsHuman A549/NF-κBp65 shRNA cells were cultivated and divided into a control group, a transfection pcDNA3.1 (+) group, and a transfection NF-κBp65ΔNLS group. Indirect immunofluorescence, real-time fluorescent quantitative PCR and Western blot techniques were used to detect the NF-κBp65 intracellular localization and the change of NF-κBp65 mRNA and protein expression level. MTT, Transwell and cell adhesion experiments were used to analyze the changes of proliferation, migration and adhesion ability of A549/NF-κBp65 shRNA cells. ResultsThe human NF-κBp65ΔNLS eukaryotic expression plasmid was successfully constructed. Compared with the control group and the transfection pcDNA3.1(+) group, NF-κBp65 mRNA expression level in A549/NF-κBp65 shRNA cells was increased in the transfection NF-κBp65ΔNLS group(10.63±0.84 vs. 1.04±0.21 and 1.23±0.22, P < 0.01) and NF-κBp65 protein expression level was also increased (1.07±0.06 vs. 0.53±0.02 and 0.59±0.04, P < 0.01). NF-κBp65 protein mainly located in the cytoplasm, and did not significantly transferred into the nucleus after stimulated by TNF-α. At the same time, A549/NF-κBp65 shRNA cells' proliferation, migration and adhesion ability were enhanced compared with the control group and the transfection pcDNA3.1(+) group. ConclusionsThrough gene mutation technology to build the human NF-κBp65ΔNLS eukaryotic expression plasmid and transfect into A549/NF-κBp65 shRNA lung cancer cell lines, both mRNA and protein expression levels of NF-κBp65 were increased significantly, and NF-κBp65 protein mainly located in the cytoplasm. The overexpressed NF-κBp65 in cytoplasm can obviously enhance the A549/NF-κBp65 shRNA cell's proliferation, migration and adhesion ability. It suggests that NF-κBp65 stranded in the cytoplasm can still regulate biological behavior of lung cancer cells by influencing the NF-κB signaling pathway related proteins.
The planning and reporting of synthesis questions in systematic review of intervention have a direct and important impact on the validity of the evaluation and the credibility of the results. Planning helps to reduce bias in the evaluation process and ensure the reproducibility of data synthesis. However, the field of systematic review currently lacks specific checklists and tools to guide how to plan and report these issues. The InSynQ (Intervention Synthesis Questions) checklist is a tool designed for planning and reporting data synthesis issues in systematic reviews of interventions. Its goal is to promote the standardization of systematic review methods, support systematic review participants in planning and comprehensively reporting data synthesis issues and structures, and provide a more accurate evidence base for clinical decision-making.