west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "3D" 171 results
  • Clinical application of 3D precise localization based on anatomical markers in the treatment of pulmonary nodules during thoracoscopic surgery

    ObjectiveTo explore the safety and feasibility of 3D precise localization based on anatomical markers in the treatment of pulmonary nodules during video-assisted thoracoscopic surgery (VATS).MethodsFrom June 2019 to April 2015, 27 patients with pulmonary nodules underwent VATS in our Hospital were collected in the study, including 3 males and 24 females aged 51.8±13.7 years. The surgical data were retrospectively reviewed and analyzed, such as localization time, localization accuracy rate, pathological results, complication rate and postoperative hospital stay.ResultsA total of 28 pulmonary nodules were localized via this method. All patients received surgery successfully. No mortality or major morbidity occurred. The general mean localization time was 17.6±5.8 min, with an accuracy of 96.4%. The mean diameter of pulmonary nodules was 14.0±8.0 mm with a mean distance from visceral pleura of 6.5±5.4 mm. There was no localization related complication. The mean postoperative hospital stay was 6.7±4.3 d. The routine pathological result showed that 78.6% of the pulmonary nodules were adenocarcinoma.Conclusion3D precise localization based on anatomical markers in the treatment of pulmonary nodules during thoracoscopic surgery is accurate, safe, effective, economical and practical, and it is easy to master with a short learning curve.

    Release date: Export PDF Favorites Scan
  • Effect Analysis on 3DMax Patch and Plain Film Applied to TAPP Treatment of Inguinal Hernia

    ObjectiveTo compare the clinical efficacy of abdominal preperitoneal laparoscopic hernia repair with 3DMax patch and plain film for treatment of inguinal hernia. MethodsThe clinical and follow-up survey data of 120 patients with inguinal hernia in The Second Affiliated Hospital of Harbin Medical University, between January 2009 and May 2014, which were treated by laparoscopic transabdominal preperitoneal repair (TAPP) were retrospectively analyzed. One hundred and twenty cases were divided into two groups:plain film group (45 cases) and 3DMax group (75 cases) according to the intraoperative use of different patchs. The patches of 3DMax group were not fixed, the patches of plain film group were fixed with metal nails. The postoperative clinical effect of two groups were analyzed. ResultsThe operative time, intraoperative blood loss, and postoperative hospitalization days of two groups were no statistical significance (P > 0.05). The postoperative off bed activity time of patients in 3DMax group and plain film group was (20.2±8.1) h and (26.3±9.2) h, respectively, the average off bed activity time in 3DMax group was significantly earlier than that in plain film group (P=0.041). The material expenses and hospitalization expenses of the 3DMax group were significantly lower than those of the plain film group (P=0.001, P=0.038). The incidence of foreign body sensation of inguinal region in 1, 3, and 9 months after operation of 3DMax group were lower than those of plain film group (P=0.045). The VAS score in 1 and 3 months after operation of 3DMax group were lower than those of plain film group (P < 0.05), but there was no statistically significant in 6 months after operation of 2 groups (P > 0.05). There was no recurrence case in two groups. ConclusionsThe use of 3DMax patch in laparoscopic TAPP operation have more simple operation, hospitalization expenses decreased, recovery faster, postoperative inguinal nerve pain and foreign body sensation more lighter, and complications more less. It is worthy of clinical popularization and Application.

    Release date: Export PDF Favorites Scan
  • Research Status and Application Prospect of Personalizing Pancreatic Cancer Organoids in The Era of Precision Medicine

    ObjectiveTo summarize current patient-derived organoids as preclinical cancer models, and its potential clinical application prospects. MethodsCurrent patient-derived organoids as preclinical cancer models were reviewed according to the results searched from PubMed database. In addition, how cancer-derived human tumor organoids of pancreatic cancer could facilitate the precision cancer medicine were discussed. ResultsThe cancer-derived human tumor organoids show great promise as a tool for precision medicine of pancreatic cancer, with potential applications for oncogene modeling, gene discovery and chemosensitivity studies. ConclusionThe cancer-derived human tumor organoids can be used as a tool for precision medicine of pancreatic cancer.

    Release date:2016-10-25 06:10 Export PDF Favorites Scan
  • Research progress of shear-thinning bioink in 3D bioprinting tissue trachea

    Shear thinning is an ideal feature of bioink because it can reduce the chance of blocking. For extrusion based biological printing, bioink will experience shear force when passing through the biological printer. The shear rate will increase with the increase of extrusion rate, and the apparent viscosity of shear-thinning bioink will decrease, which makes it easier to block, thus achieving the structural fidelity of 3D printing tissue. The manufacturing of complex functional structures in tissue trachea requires the precise placement and coagulation of bioink layer by layer, and the shear-thinning bioink may well meet this requirement. This review focuses on the importance of mechanical properties, classification and preparation methods of shear-thinning bioink, and lists its current application status in 3D printing tissue trachea to discuss the more possibilities and prospects of this biological material in tissue trachea.

    Release date: Export PDF Favorites Scan
  • Application and research progress of 3D printing magnesium-based biological scaffolds in the field of bone regeneration

    In recent years, 3D printing technology, as a new material processing technology, can precisely control the macroscopic and microstructure of biological scaffolds and has advantages that traditional manufacturing methods cannot match in the manufacture of complex bone repair scaffolds. Magnesium ion is one of the important trace elements of the human body. It participates in many physiological activities of the body and plays a very important role in maintaining the normal physiological function of the organism. In addition, magnesium ions also have the characteristics of promoting the secretion of osteogenic proteins by osteoblasts and osteogenic differentiation of mesenchymal stem cells. By combining with 3D printing technology, more and more personalized magnesium-based biological scaffolds have been produced and used in bone regeneration research in vivo and in vitro. Therefore, this article reviews the application and research progress of 3D printing magnesium-based biomaterials in the field of bone regeneration and repair.

    Release date:2023-05-23 03:05 Export PDF Favorites Scan
  • Application of three-dimensional printing technique in surgical treatment of congenital heart disease

    Objective To evaluate the application of three-dimensional printing technique in surgical treatments on complex congenital heart diseases. Methods Two patients were enrolled with complex congenital heart diseases. The computerized tomography data were used to build the 3D architecture of cardiac anomalies. The White-Jet-Process technique was used to print the models with 1∶1 ratio in size. The models were used to make the treatment strategy making, young surgeon training and operation simulation. Results The full color and hollowed-out cardiac models with 1∶1 ration in size were printed successfully. They were transected at the middle point of vertical axis, which was conveniently to explore the intracardiac anomalies. However, for patient 1, the model lost the atrial septal defect. Taking the two models as references, operation group held preoperative consultation, operation simulation, and finally, the operation plans were determined for the two patients. Both the two operation were carried out smoothly. Conclusion Although the limitations of 3D printing still exist in the application for congenital heart diseases, making the preoperative plan and operation simulation via 3D cardiac model could enhance the understanding of following operation and procedure details, which could improve the tacit cooperation among operation group members. Furthermore, operation results also could be improved potentially. Therefore, the cardiac 3D printing should be popularized in clinic in the future.

    Release date:2018-07-27 02:40 Export PDF Favorites Scan
  • Clinical comparative study of naked eye 3D versus 2D thoracoscope in minimally invasive esophagectomy

    ObjectiveTo investigate the safety and efficacy of naked eye 3D thoracoscopic surgery in minimally invasive esophagectomy.MethodsClinical data of 65 patients, including 50 males and 15 females aged 47-72 years, with esophageal cancer who underwent minimally invasive thoracoscopic esophagectomy from October 2018 to April 2019 were retrospectively analyzed. Patients were divided into two groups according to different surgical methods including a naked eye 3D thoracoscopic group (group A: 30 patients) and a traditional 2D thoracoscopic group (group B: 35 patients). The effects of the two groups were compared.ResultsThe operation time in the group A was significantly shorter than that in the group B (P<0.05). The number of dissected lymph nodes in the group A was more than that in the group B (P<0.05). The thoracic drainage volumes on the 1th-3th days after operation in the group A were significantly larger than those in the group B (P<0.05), but there was no significant difference between the two groups on the 4th-5th days after operation (P>0.05). The indwelling time in the group A was longer than that in the group B (P<0.05). Postoperative hospital stay, pulmonary infection, arrhythmia, anastomotic leakage, and recurrent laryngeal nerve injury were not significantly different between the two groups (P>0.05).ConclusionNaked eye 3D thoracoscopic surgery for minimally invasive esophagectomy is a safe and effective surgical procedure. Compared with traditional 2D minimally invasive thoracoscopic surgery, it is safer in operation and more thorough in clearing lymph nodes. The operation is more efficient and can be promoted.

    Release date:2020-04-26 03:44 Export PDF Favorites Scan
  • Application of 3D printing in the diagnosis and surgical treatment of congenital tracheal stenosis

    Objective To assess the application value of 3-dimensional(3D) printing technology in surgical treatment for congenital tracheal stenosis. Methods We retrospectively analyzed the clinical data of preoperative diagnosis, intra-operative decision-making and postoperative follow-up of four children with congenital tracheal stenosis under the guidance of 3D printing in our hospital between February 2013 and May 2014. There were 3 males and 1 female aged 23.0±7.1 months. Among them, two children were with pulmonary artery sling, one with ventricular septal defect, and the other one with tetralogy of Fallot. The airway stenosis was diagnosed preoperatively by chest CT scan and 3D printing tracheal models, and was confirmed by the help of bronchoscopy under anesthesia. During operation the associated cardiac malformation was corrected firstly under extracorporeal circulation followed by tracheal malformation remedy. The design and implementation of tracheal operation plans were guided by the shape and data from 3D printing trachea models. There were two patients with long segment of tracheal stenosis who received slide anastomosis. And the other two patients were characterized with tracheal bronchus, one of which combined ostial stenosis of right bronchial performed extensive slide anastomosis, and the other one performed end to end anastomosis. Results All the children’s preoperative 3D printing trachea models were in accord with bronchoscopy and intra-operative exploration results. Intra-operative bronchoscopy confirmed that all tracheal stenosis cured completely. All anastomotic stomas were of integrity, and all the luminals were fluent. There was no operative death or no serious complication. During 1-2 years follow-up, all patients breathed smoothly and their airways were of patency by postoperative 3D printing trachea model. Conclusion 3D printing can provide a good help to congenital tracheal stenosis in preoperative diagnosis, the design of operation plan, intra-operative decision-making and manipulation, which can improve the operation successful rate of tracheal stenosis.

    Release date:2017-03-24 03:45 Export PDF Favorites Scan
  • The role of 3D printed ventricular septal defect model in the training of young cardiac surgeons

    Objective To explore the application effect of 3D printed heart models in the training of young cardiac surgeons, and evaluate their application value in surgical simulation and skill improvement. MethodsEight young cardiac surgeons were selected form West China Hospital as the trainees. Before training, the Hands-On Surgical Training-Congenital Heart Surgery (HOST-CHS) operation scores of the 8 cardiac surgeons were obtained after operating on 2 pig heart models of ventricular septal defect (VSD). Subsequently, simulation training was conducted on a 3D printed peri-membrane VSD heart model for 6 weeks, once a week. After the training, all trainees completed 2 pig heart VSD repair surgeries. The improvement of doctors’ skills was evaluated through survey questionnaires, HOST-CHS scores, and operation time after training. ResultsBefore the training, the average HOST-CHS score of the 8 trainees was 52.2±6.3 points, and the average time for VSD repair was 54.7±7.1 min. During the 6-week simulation training using 3D printed models, the total score of HOST-CHS for the 8 trainees gradually increased (P<0.001), and the time required to complete VSD repair was shortened (P<0.001). The trainees had the most significant improvement in scores of surgical cognition and protective awareness. The survey results showed that trainees were generally very satisfied with the effectiveness of 3D model simulation training. Conclusion The 3D printed VSD model demonstrates significant application advantages in the training of young cardiac surgeons. By providing highly realistic anatomical structures, 3D models can effectively enhance surgeons’ surgical skills. It is suggested to further promote the application of 3D printing technology in medical education, providing strong support for cultivating high-quality cardiac surgeons.

    Release date:2024-09-20 12:30 Export PDF Favorites Scan
  • Application of 3D printed lumbar puncture models in orthopedic clinical teaching

    ObjectiveTo explore the feasibility of lumbar puncture models based on 3D printing technology for training junior orthopaedic surgeons to find the optimal pedicle screw insertion points.MethodsMimics software was used to design 3D models of lumbar spine with the optimal channels and alternative channels. Then, the printed lumbar spine models, plasticine, and cloth were used to build lumbar puncture models. From January 2018 to June 2019, 43 orthopedic trainees performed simulated operations to search for the insertion points of pedicle screws base on the models. The operations were performed once a day for 10 consecutive days, and the differences in operation scores and operation durations of the trainees among the 10 days were compared.ResultsAll the trainees completed the surgical training operations successfully, and there were significant differences in the operation scores (13.05±2.45, 14.02±3.96, 17.58±3.46, 21.02±2.04, 23.40±4.08, 25.14±3.72, 27.26±6.09, 33.37±4.23, 35.00±4.15, 38.49±1.70; F=340.604, P<0.001) and operation durations [(22.51±4.28), (19.93±4.28), (18.05±2.89), (17.05±1.76), (16.98±1.97), (15.47±1.74), (13.51±1.42), (12.60±2.17), (12.44±1.71), (11.91±1.87) minutes; F=102.359, P<0.001] among the 10 days.ConclusionThe 3D models of lumbar puncture are feasible and repeatable, which can contribute to surgical training.

    Release date:2019-09-06 03:51 Export PDF Favorites Scan
18 pages Previous 1 2 3 ... 18 Next

Format

Content