Objective To investigate the possibility of differentiation of theisolated and cultured adipose-derived adult stem cells into chondrocytes, which is induced by the recombinant human bone morphogenetic protein 2 (rhBMP-2). Methods The rabbit adipose tissue was minced and digested by collagenase Type Ⅰ. The adposederived adult stem cells were obtained and then they were cultured inthe micropellet condition respectively in the rhBMP-2 group, the rhTGF-β1 group, the combination group, and the control group for 14 days. The differentiation of the adiposederived stem cells into chondrocytes was identifiedby the histological methods including HE, Alcian blue, Von kossa, and immunohistochemical stainings. Results After the continuous induction by rhBMP-2 and continuous culture for 14 days, the HE staining revealed a formation of the cartilage lacuna; Alcian blue indicated that proteoglycan existed in the extracellular matrix; the immunohistochemical staining indicated that collagen Ⅱ was in the cellular matrix; and Von kossa indicated that the adipose-derived stem cells couldnot differentiate into the osteoblasts by an induction of rhBMP-2. Conclusion In the micropellet condition, the adipose-derived adult stemcells can differentiate into the chondrocytes, which is initially induced by rhBMP-2. This differentiation can provide a foundation for the repair of the cartilage injury.
ObjectiveTo investigate the feasibility of adipose-derived mesenchymal stem cells (ADMSCs) differentiating into corneal epithelium-like cells after transfection with Pax6 gene. MethodsThe adipose tissue from bilateral inguinal of healthy C57BL/6 mice (5-6 weeks old) was used to isolate and culture ADMSCs.The 3rd passage ADMSCs were subjected to treatments of non-transfection (group A),pcDNA3.1 empty vector transfection (group B),and recombinant plasmid of pcDNA3.1-Pax6 transfection (group C),respectively.At 48 hours after transfection,the cells in groups B and C were selected with G418.The cell morphology changes were observed under the inverted microscope.Pax6 protein and level of corneal epithelial cells specific molecular-cytokeratin 12 (CK-12) were measured by Western blot.Real-time fluorescence quantitative PCR was applied to measure the mRNA expression of CK-12. ResultsNo morphology change was observed in groups A and B.Two different cell clones were found in group C.No.1 selected clone showed a flagstone-like appearance that was similar to that of corneal epithelial cells;No.2 selected clone showed a net-like appearance,with 3-7 cell processes.The Western blot results showed the Pax6 protein expression in 2 clones of group C,but no expression in groups A and B; and CK-12 protein expression was only observed in No.1 selected clone of group C,and no expression in the others.The real-time fluorescence quantitative PCR results showed that the CK-12 mRNA expression level of No.1 selected clone of group C was 8.64±0.73,which was significantly higher than that of No.2 selected clone of group C (0.55±0.42),group B (1.36±0.40),and group A (1.00±0.00) (P<0.05),and there was no significant difference among groups A,B and No.2 selected clone of group C (P>0.05). ConclusionPax6 gene transfection could induce differentiation of ADMSCs into corneal epithelium-like cells which express CK-12 at both the mRNA and protein levels.This result provides a promising strategy of generating corneal epithelilcm-like cells for construction of tissue engineered cornea.
Objective To investigate the possibility of theadipose tissue-derived stromal cells(ADSCs) to differentiate into the neuron-like cells and to explore a new cell source for the transplantation related to the central nervous system. Methods Adipose was digested by collagenase, cultured in the fetal bovine serum containing a medium. Trypse was used to digest the cells and the cell passage was performed. The 3rd to the 9th passage ADSCs were used to make an induction. Isobutylmethylxanthine, indomethacin, insulin, and dexamethasone were used to induce the ADSCs to differentiate into the neuron-like cells and adipocytes. Sudan black B and immunocytochemistry were used to identify the cells. Results A population of the ADSCs could be isolated from the adult human adipose tissue, they were processed to obtain a fibroblast-like population of the cells and could be maintained in vitro for an extendedperiod with the stable population doubling, and they were expanded as the undifferentiated cells in culture for more than 20 passages, which indicated their proliferative capacity. They expressed vimentin and nestin, and characteristics of the neuron precursor stem cells at an early stage of differentiation. And the majority of the ADSCs also expressed the neuron-specific enolase and βⅢ-tubulin, characteristics of the neurons. Isobutyl-methyxanthine, indomethacin, insulin, and dexamethasone induced 40%-50% of ADSCs to differentiate into adipocytes and 0.1%0.2% of ADSCs into neuron-like cells. The neuron-like cells had a complicated morphology of the neurons, and they exhibited a neuron phenotype, expressed nestin, vimentin, neuron-specific enolase and βⅢ-tubulin, but some neuron-like cells also expressed thesmooth muscle actin (SMA), and the characteristics of the smooth muscle cells; however, the neurons from the central nervous system were never reported to express this kind of protein. Therefore, the neuron-like cells from the ADSCs could be regarded as functional neurons. Conclusion Ourresults support the hypothesis that the adult adipose tissue contains the stem cells capable of differentiating into the neuron-like cells, and they can overcome their mesenchymal commitment, which represents an alternative autologous stemcell source for transplantation related to the central nervous system.
Objective To review research progress of adipose tissuederived stromal cells (ADSCs).Methods The recent articles on ADSCs were extensively reviewed, and the culture and differentiation ability of ADSCs were investigated.Results A population of stem cells could be isolated from adult adipose tissue, they were processed to obtain a fibroblast-like population of cells and could be maintained in vitro for extended periods with stable population doubling. The majority of the isolated cells were mesenchymal origin, with a few pericytes,endothelial cells and smooth muscle cells. ADSCs could be induced to differentiate intomultiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic and adipogenic cells, they could also differentiate into nerve cells.Conclusion ADSCs can substitute mesenchymal stem cells and become an alternative stem cells source for tissue engineering.
Objective To review the biochemical characteristics, appl ication progress, and prospects of the adiposederived stem cells (ADSCs). Methods The recent original experimental and cl inical l iterature about ADSCs was extensively reviewed and analyzed. Results ADSCs can be readily harvested in large numbers from adipose tissue with properties of stable prol iferation and potential differentiation in vitro. Significant progress of ADSCs is made in the animal experimentand the cl inical appl ication. It has been widely used in the cl inical treatment of cardiovascular disease, metabol ic disease, encephalopathy, and tissue engineering repair. Conclusion ADSCs have gradually replaced bone marrow mesenchymal stem cells and become the focused hot spot of regenerative medicine and stem cells.
Objective To investigate the differentiation of theadipose-derived adult stem cell (ADASC) induced by the recombinant adenovirus’s containing fibers derived from B-group serotype 35 (rAd5/F35)mediated human bone morphogenetic protein 7 (hBMP-7) gene and to explore a new cell sourcefor the bone tissue engineering. Methods The hBMP-7 gene wasamplified with the pcDNA1.1/AMP-hBMP-7 plasmid as a formwork. After the purification, the gene fragment was cloned into the pDC316 carrier for the recombination of the plasmid of pDC316-hBMP-7. The 293 cells were cotransfected by the skeleton plasmid of pBHG-fiber5/35 and the shuttle plasmid of pDC316-hBMP-7, and the recombinant plasmid of Ad5/F35-hBMP-7 was obtained; the recombinant plasmid of Ad5/F35enhancd green fluorescent protein(EGFP) was obtained by the similar method. The rat ADASCs were cultured and transfected by the Ad5/F35-hBMP-7plasmid and the Ad5/F35-EGFP plasmid, respectively; the remaining untransfected ADASC were used as the controls. The morphology and the growth pattern of the transfected cells were evaluated. The transcription and the expression of the transfected genes and the steogenic phenotypes such as calcium nodules and osteocalcin were evaluated by ELISA. Results The identification of PCR and enzyme cutting showed that the construction of the recombinant Ad5/F35-hBMP-7 plasmid could be confirmed. The transfection rate of the ADASC by the Ad5/F35-EGFP plasmid was determined to be greater than 90%. The hBMP-7 gene in thetransfected ADASC could express the corresponding protein, and the formation ofthe calcium nodules could be found in the induced group. The electron microscopy showed that there was a calcium element in the cytoplasm, the alkaline phosphatase result was positive, and the expression of osteocalcin was increased. Conclusion The rAd5/F35-hBMP-7 gene can promote the differentiation of the adiposederived adult stem cells to the osteoblasts in the bone tissue engineering.
ObjectiveTo summarize the isolation procedures, molecular characterization, and differentiation and vascularization capacity of adipose-derived stem cells (ADSCs), in order to discuss the potential value of ADSCs for the repairment and regeneration of adipose tissues. MethodsRelated literatures about ADSCs were retrieved to summarize the potential value of ADSCs for the repairment and regeneration of adipose tissues. ResultsAs mesenchymal stem cells, ADSCs was rich in human adipose tissues. ADSCs possessed the potential to differentiate toward a variety of cell lineages, such as adipogenic, chondrogenic, osteogenic, cardiomyogenic, myogenic, and angiogenic. Besides, its capacity of adipogenic differentiation could maintain several passages. The most importantly, ADSCs could secrete significant amounts of angiogenesis-related cytokines, such as vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2), which increased the angiogenesis of adipose tissue. ConclusionsADSCs play a key role in adipose tissue engineering, autologous adipose tissue grafting, and soft tissue wound repairing, which have important application prospect for breast reconstruction.
Objective To construct chemically extracted acellular nerve allograft (CEANA) with Schwann cells (SCs) from different tissues and to compare the effect of repairing peripheral nerve defect. Methods Bone marrow mesenchymal stem cells (BMSCs) and adi pose-derived stem cells (ADSCs) were isolated and cultured from 3 4-week-old SD mice with weighing 80-120 g. BMSCs and ADSCs were induced to differentiated MSC (dMSC) and differentiated ADSC (dADSC) in vitro.dMSC and dADSC were identified by p75 protein and gl ial fibrillary acidic protein (GFAP). SCs were isolated and culturedfrom 10 3-day-old SD mice with weighing 6-8 g. CEANA were made from bilateral sciatic nerves of 20 adult Wistar mice with weighing 200-250 g. Forty adult SD mice were made the model of left sciatic nerve defect (15 mm) and divided into 5 groups (n=8 per group) according to CEANA with different sources of SCs: autografting (group A), acellular grafting with SCs (5 × 105) (group B), acellular grafting with dMSCs (5 × 105) (group C), acellular grafting with dADSCs (5 × 105) (group D), and acellular grafting alone (group E). Motor and sensory nerve recovery was assessed by Von Frey and tension of the triceps surae muscle testing 12 weeks after operation. Then wet weight recovery ratio of triceps surae muscles was measured and histomorphometric assessment of nerve grafts was evaluated. Results BMSCs and ADSCs did not express antigens CD34 and CD45, and expressed antigen CD90. BMSCs and ADSC were differentiated into similar morphous of SCs and confirmed by the detection of SCs-specific cellsurface markers. The mean 50% withdrawal threshold in groups A, B, C, D, and E was (13.8 ± 2.3), (15.4 ± 6.5), (16.9 ± 5.3), (16.3 ± 3.5), and (20.0 ± 5.3) g, showing significant difference between group A and group E (P lt; 0.01). The recovery of tension of the triceps surae muscle in groups A, B, C, D, and E was 87.0% ± 9.7%, 70.0% ± 6.6%, 69.0% ± 6.7%, 65.0% ± 9.8%, and 45.0%± 12.1%, showing significant differences between groups A, B, C, D, and group E (P lt; 0.05). No inflammatory reactionexisted around nerve graft. The histological observation indicated that the number of myel inated nerve fiber and the myel in sheath thickness in group E were significantly smaller than that in groups B, C, and D (P lt; 0.01). The fiber diameter of group B was significantly bigger than that of groups C and D (P lt; 0.05) Conclusion CEANA supplementing with dADSC has similar repair effect in peripheral nerve defect to supplementing with dMSC or SCs. dADSC, as an ideal seeding cell in nerve tissue engineering, can be benefit for treatment of peripheral nerve injuries.
Objective To review the study on adi pose derived stem cells (ADSCs) in the therapy of urological diseases. Methods The recent l iterature concerning ADSCs in bladder repair, urethral reconstruction, incontinence treatment, and erectile dysfunction treatment was reviewed. Results The appl ication of tissue engineering using ADSCs has made significant achievements in the treatment of urological diseases and in animal studies, and has been initially used in cl inicaland has achieved a good therapeutic effect. Conclusion Tissue engineering using ADSCs has good prospects in the study on urological diseases, and is expected to widely used in the treatment of urological diseases.
ObjectiveTo review the research progress of constructing injectable tissue engineered adipose tissue by adipose-derived stem cells (ADSCs). MethodsRecent literature about ADSCs composite three-dimensional scaffold to construct injectable tissue engineered adipose tissue is summarized, mainly on the characteristics of ADSCs, innovation of injectable scaffold, and methods to promote blood supply. ResultsADSCs have a sufficient amount and powerful ability such as secretion, excellent compatibility with injectable scaffold, plus with methods of promoting blood supply, which can build forms of injectable tissue engineered adipose tissue. ConclusionIn despite of many problems to be dealt with, ADSCs constructing injectable tissue engineered adipose tissue may provide a promising source for soft-tissue defect repair and plastic surgery.