The R software bmeta package is a package that implements Bayesian meta-analysis and meta-regression by invoking JAGS software. The program is based on the Markov Chain Monte Carlo (MCMC) algorithm to combine various effect quantities (OR, MD and IRR) of different types of data (dichotomies, continuities and counts). The package has the advantages of fewer command function parameters, rich models, powerful drawing function, easy of understanding and mastering. In this paper, an example is presented to demonstrate the complete operation flow of bmeta package to implement bayesian meta-analysis and meta-regression.
The WinBUGS software can be called from either R (provided R2WinBUGS as an R package) or Stata software for network meta-analysis. Unlike R, Stata software needs to create relevant ADO scripts at first which simplify operation process greatly. Similar with R, Stata software also needs to load another package when drawing network plots. This article briefly introduces how to implement network meta-analysis using Stata software by calling WinBUGS software.
Bayesian N-of-1 trials is increasingly popular in recent years. This study introduced the principle, statistical requirements, application status, advantages and disadvantages of Bayesian N-of-1 trials. Although the application of Bayesian N-of-1 trials is still limited in small scale and some problems remain to be solved, but it can provide more posterior information, and it can be the most important type of N-of 1 trial in future.
The choice of genetic models was main difficulty in the meta-analysis of gene-disease association studies. In this study, we made a further discussion about the genetic model-free approach that proposed by Minelli et al. The program that coded by JAGS and R was carried out to perform the Bayesian procedure. In a real example, several kinds of prior distribution were used, including non-informative prior distribution and external clinical prior information. Especially, compared to Minelli’s study, we introduced clinical prior information. The results indicated that the pooled results were rather robust no matters the prior distribution were non-informative or informative, especially when the number of included studies were large.
ObjectiveTo combine specific examples and R Studio language code, to apply the Bayesian quantile regression method in the analysis of clinical medicine data, and show the advantages of Bayesian quantile regression method, so as to provide references for improving the accuracy of medical research. Methods The clinical data of 250 patients with knee osteoarthritis from the capital special research on the application of clinical characteristics project were used. A Bayesian quantile regression model based on data set was constructed to explore the relationship between the level of serum IgG and the age of the patients. Results The Monte Carlo algorithm converge can judge the efficiency of parameter estimation based on Gibbs sampling which was used to draw samples from the posterior distribution of parameters in Bayesian quantile regression. By generating the parameter into the regression formula, we can obtain the regression under different quantiles: Y1=−6.022 063 47+2.026 913 73X−0.015 077 69X2……Y5=24.610 542 414−0.395 059 497X+0.004 205 064X2. It can be found that the serum level of IgG was obviously increased with age. Conclusion Bayesian quantile regression parameter estimation results are accurate and highly credible, and reliable parameter information can be obtained even under small sample conditions. It has great advantages in the research of clinical medicine data and has certain promotional value.
BUGSnet is a powerful R project package for Bayesian network meta-analysis. The package is based on JAGS and enables high-quality Bayesian network meta-analysis according to recognized reporting guidelines (PRISMA, ISPOR-AMPC-NCA and NICE-DSU). In this paper, we introduced the procedure of the BUGSnet package for Bayesian network meta-analysis through an example of network meta-analysis of steroid adjuvant treatment of pemphigus with continuous or dichotomous data.
Systematic reviews and meta-analyses have become the cornerstone methodologies for integrating multi-source research data and enhancing the quality of evidence. Traditional meta-analyses often demonstrate limitations when handling multiple treatment options. Network meta-analysis (NMA) overcomes these limitations by constructing a network of evidence that encompasses various treatment options, allowing for the simultaneous comparison of both direct and indirect evidence across multiple treatment plans. This provides more comprehensive and precise support for clinical decision-making. This article comprehensively reviews the statistical principles of NMA, its three fundamental assumptions, and the statistical inference framework. It also critically analyzes the mainstream NMA software and packages currently available, such as R (including gemtc, netmeta, rjags, pcnetmeta), Stata (mvmeta, network), WinBUGS, SAS, ADDIS, and various online applications, highlighting their strengths, weaknesses, and suitable scenarios. This analysis provides researchers with a scientific and unified framework for conducting clinical studies and policy-making.
ObjectiveTo introduce a Bayesian meta-analysis method for quantitatively integrating evidence from both randomized controlled trials (RCTs) and non-randomized studies of interventions (NRSIs), using concrete examples and R code, thereby supporting the combined utilization of both study types in empirical research. MethodsUsing a meta-analysis on the association between low-dose methotrexate exposure and melanoma as an example, we employed the jarbes package in R to conduct both a traditional Bayesian meta-analysis and a Bayesian nonparametric bias-correction meta-analysis model for quantitative integration. The differences between the two pooled results were then compared. ResultsThe traditional Bayesian meta-analysis indicated a posterior probability of 99% that low-dose methotrexate exposure increases melanoma risk. The Bayesian nonparametric bias-correction meta-analysis model showed a posterior probability of 92% that low-dose methotrexate exposure increases melanoma risk. ConclusionCompared to the traditional Bayesian meta-analysis model, the nonparametric bias-correction meta-analysis model is more suitable for quantitatively integrating evidence from RCTs and NRSIs, demonstrating potential for broader application. However, the comparability between the two evidence bodies should be carefully assessed prior to quantitative integration.
ObjectivesTo systematically review the efficacy of seven types of cognitive interventions for older adults with mild to moderate Alzheimer's Disease (AD).MethodsWe searched The Cochrane Library, PubMed, EMbase, CNKI, WanFang Data, VIP and CBM databases to collect randomized controlled trials on cognitive interventions for mild to moderate Alzheimer's Disease (AD) from inception to January 2018. Two reviewers independently screened literature, extracted data, and assessed the risk of bias of included studies. STATA 14.0 software was then used to perform a meta-analysis.ResultsA total of 49 randomized controlled trials (RCTs) were included. The results of network meta-analysis revealed that each cognitive intervention had significantly improved the cognitive ability of AD patients. Specifically, nursing intervention (NI) (MD=3.01, 95%CI 1.70 to 4.50, P<0.005) was the most effective enhancer of cognitive ability, followed by music therapy (MT) (MD=2.60, 95%CI 0.96 to 4.30, P<0.001), physical exercise (PE) (MD=2.4, 95%CI 1.0 to 3.9, P<0.001), cognitive rehabilitation (CR) (MD=2.3, 95% CI 0.92 to 3.7, P=0.013), cognitive simulation (CS) (MD=1.7, 95%CI 1.2 to 2.3, P=0.037), computerized cognitive training (CCT) (MD=1.6, 95%CI 0.42 to 2.8, P<0.001), and pharmacological therapies (PT) (MD=1.5, 95%CI 0.24 to 2.8, P=0.041).ConclusionsThe seven types of cognitive interventions are helpful in improving the cognitive ability of Alzheimer's patients, and nursing intervention is the most effective cognitive intervention. Moreover, non-pharmacological therapies may be better than pharmacological therapies.
This study introduced the construction of individualized risk assessment model based on Bayesian networks, comparing with traditional regression-based logistic models using practical examples. It evaluates the model's performance and demonstrates its implementation in the R software, serving as a valuable reference for researchers seeking to understand and utilize Bayesian network models.