Objective To study the effect of direct bone morphogenetic protein 2 (BMP-2) gene therapy mediated by adenovirus on repairing bone defect. Methods The radial defect models were made on 60 rabbits, which were evenly divided into 4 groups randomly. The 4 groups were treated with different materials: group A, adenovirus carrying BMP-2 gene (AdBMP-2) plus bovine cancellous bone (BCB); group B, reconstructed BMP-2 plus BCB; group C, AdLacz plus BCB; and group D, only BCB scaffolds. The X-ray, histological examination, biomechanics analysis, and immunohistochemical staining were made 4, 8, and 12 weeks after the operation. Results Group A gained better effect in the volume of new bones, the anti-bending intensity of the healing bone, and the expression of BMP-2 than those of group B. The defect in group A was healed. No new bones were observed in group C and group D. Conclusion Direct BMP-2 gene therapy is easy to perform and has veryb osteoinduction ability. It is a good method to repair segmental bone defects.
Objective To observe effects of the direct impaction onthe cell survival and the bone formation of the tissue engineered bone modified by the adenovirus mediated human bone morphogenetic protein 2 (Adv-hBMP2) gene and to verify the feasibility of the impacted grafting with it. Methods The marrow stromal cells (MSCs) were separated from the canine bone marrow and were cultured. MSCs were transfected with the Adv-hBMP2 gene and combined with the freeze-dried cancellous bone (FDB) to form the tissue engineered bone. Four days after the combination, the tissue engineered bone was impacted in a simulated impactor in vitro and implanted in the mouse. The cell survivals were evaluated with SEM 1 and 4 days after the combination, immediately after the impaction, and 1 and 4 days after the impaction, respectively. The bone formation and the allograft absorption were histologically evaluated respectively. Results There were multiple layers of the cells and much collagen on FDB before the impaction. Immediately after the impaction, most of the cells on the direct contact area disappearedand there was much debris on the section. Some of the cells died and separatedfrom the surface of FDB at 1 day, the number of the cells decreased but the collagen increased on the surface at 4 days. Histologically, only the fibrous tissue was found in FDB without the cells, the bone formation on FDB was even in distribution and mass in appearance before the impaction, but declined and was mainly on the periphery after the impaction in the AdvhBMP2 modified tissue-engineered bone. Conclusion The simulated impaction can decrease the cells survival and the bone formation of the AdvhBMP-2 modified tissue-engineered bone. The survival cells still function well.It is feasible to use the tissue engineered bone in the impaction graft.
Objective To evaluate the host immune reaction against adenovirus mediated human bone morphogenetic protein 2 (Adv-hBMP-2) gene therapy in repairof tibial defects. Methods Twelve goats were made 2.1 cm segmental defects in he tibial diaphysis and divided into 2 groups. AdvhBMP2 transfected marrow mesenchymal stem cells(MSCs) and untransfected MSCs were implanted into the defect sites of transfected group(n=7) and untransfected group (n=5), respectively. The defect repair was observed by X-ray films after 4, 8, 16 and 24 weeks of transplantation and cellular and humoral immune reactions to adenovirus were assayed before implantation and after implantation. Results More bony callus was found in the bone defects of transfected group. The healing rates were 6/7 in transfected group and 2/5 in untransfected group, respectively at 24 weeks after implantation. The mixed culture of lymphocytes and MSCs showed that the lymphocytes stimulation indexes (SI) increased 14 days after implantation, and there was significant difference between the transfected group (4.213±1.278) and the untransfected group(-0.310±0.147,Plt;0.05); SI decreased after 28 days, but there was no significant difference between the transfected group (2.544±0.957) and the untransfected group (3.104±0.644,Pgt;0.05). After 14, 28, 49, and 120 days of treatment, the titer values of neutralizing antibody against Adv-hBMP-2 (log0.1) were 2.359±0226, 2.297±0.200, 2.214±0.215 and 2.297±0.210 in transfected group, and -0.175±0.335, -0.419±0.171, 0±0.171 and 0.874±0.524 in untransfected group, being significant differences betweentwo groups(Plt;0.05). Conclusion Adenovirus mediated BMP-2gene therapy can cause cellular and humoral immune reactions against adenovirus, which can eliminate the influence of adenoviral genes and proteins within a certain period.
Objective To study the expression changes of vascular endothel ial growth factor (VEGF), basic fibroblast growth factor (bFGF), and bone morphogenetic protein 2 (BMP-2) in femoral neck fracture, traumatic, and non-traumatic avascular necrosis of femoral head (ANFH), and to study the relationshi p between the expressions of VEGF, bFGF, BMP-2mRNA and bone mass so as to explore the pathogenesis of ANFH and provide the exprimental basis for individual treatment of ANFH. Methods Femoral head specimens were obtained from 59 donors undergoing total hip replacement, including 22 cases of traumatic ANFH (group A, 13 cases of Ficat stage III and 9 cases of Ficat stage IV), 19 cases of non-traumatic ANFH (group B, 11 cases of Ficat stage III and 8 cases of Ficat stage IV; 10 cases of steroid-induced ANFH, 7 cases of alcohol ic ANFH, and 2 cases of unexplained ANFH), and 18 cases of fresh femoral neck fracture (group C). There was no significant difference in the general data among 3 groups (P gt; 0.05). The bone mineral density (BMD) at weight-bearing area of the femoral head was measured with dual energy X-ray absorptiometry. The pathological changes were observed by using optical microscope and scanning electron microscope. The percentage of empty bone lacuna and the percentage of trabecular bone area were calculated. The expressions of VEGF, bFGF, and BMP-2 mRNA in femoral head were detected by use of in-situ hybridization technique. Results The BMD in groups A and B were significantly lower than that in group C (P lt; 0.05), and there was significant difference between group A and group B (P lt; 0.05). In the necrosis area of groups A and B, the bone trabecula was rarefactive and not of integrity, with a great number of empty bone lacuna. In healthy area, more fiber hyperplasia was observed in group A, the prol iferated and hypertrophic fat cells in the medullary cavity in group B. Scanning electron microscope showed that many osteocytes underwent fatty degeneration and necrosis, and that the prol iferation of fat cells in bone matrix was observed in groups A and B. While in group C, the femoral head had intact articular cartilage and intact bone trabeculae, and osteocytes were clearly seen. The percentage of empty bone lacuna was significantly higher (P lt; 0.05) and the percentage of trabecular bone area was significantly lower (P lt; 0.05) in groups A and B than group C; and there was significant difference in the percentage of empty bone lacuna between groups A and B (P lt; 0.05). The expressions of VEGF, bFGF, and BMP-2 mRNAwere significantly lower in groups A and B than group C (P lt; 0.05), and the expressions of BMP-2 and bFGF mRNA in group A were significantly higher than those in group B (P lt; 0.05). There were positive l inear correlation between the expressions of VEGF mRNA, bFGF mRNA, BMP-2 mRNA and the BMD and percentage of trabecular bone area, respectively. While there were significantly negative correlation between the expressions of VEGF mRNA, bFGF mRNA, BMP-2 mRNA and percentage of empty bone lacuna. Conclusion The repair capacity of local femoral head in traumatic ANFH is ber than that in non-traumatic ANFH. The expressions of VEGF mRNA, bFGF mRNA, and BMP-2 mRNA decl ine in traumatic and nontraumatic ANFH.
ObjectiveTo construct and identify the recombinant adenovirus vector expressing bone morphogenetic protein 2(BMP-2) and transforming growth factor β3(TGF-β3) genes,to observe the expressions of BMP-2 and TGF-β3 after transfected into bone marrow mesenchymal stem cells (BMSCs) of the Diannan small-ear pigs. MethodsBMP-2 cDNA and TGF-β3 cDNA were amplified by PCR,and were subcloned into the pEC3.1(+) plasmid to obtain pEC-GIE 3.1-BMP-2 and pEC-GIE3.1-TGF-β3 plasmid respectively.They were subcloned into pGSadeno vector by homologous recombination reaction and HEK293 cells were transfected after linearization to obtain Ad-BMP-2 and Ad-TGF-β3.The BMSCs were isolated from the bone marrow of Diannan small-ear pig and cultured.The 3rd passage BMSCs were transfered with Ad-BMP-2(group A),Ad-TGF-β3(group B),Ad-BMP-2+Ad-TGF-β3(group C),and untransfected cells served as a control (group D).The expressions of BMP-2 and TGF-β3 genes and proteins were detected by PCR,immunofluorescence,and Western blot.The chondrogenic differentiation of BMSCs was evaluated by immunohistochemical of collagen type Ⅱ. ResultsThe Ad-BMP-2 and Ad-TGF-β3 were constructed successfully and confirmed by PCR and sequencing.The expression clones of Ad-BMP-2 and Ad-TGF-β3 were packaged into maturated adenovirus successfully,the titer was 5.6×108 and 1.6×108 pfu/mL respectively.The PCR results showed a light band at 310 bp in group A and at 114 bp in group B,and both 310 bp and 114 bp bands in group C,but no band in group D.The image of immunofluorescence showed that there were red fluorescence and green fluorescence expressions in the cytoplasm of BMSCs at 72 hours after transfection in groups A and B,respectively;in group C,both red and green fluorescence expressions were detected,and no red or green fluorescence was detected in group D.The results of Western blot showed that there was a light band at 18×103 in group A and at 50×103 in group B;both 18×103 and 50×103 bands were detected in group C;but no band was detected in group D.The cells were positive for collagen type Ⅱ in groups A,B,and C;group C acquired strong collagen type Ⅱ staining when compared with group A and group B;in group D,the cells were negative for collagen type Ⅱ staining. ConclusionThe recombinant adenovirus vector expressing BMP-2 and TGF-β3 are constructed successfully.The BMP-2 and TGF-β3 genes could be expressed effectively in BMSCs of Diannan small-ear pig after transfection,which could afford modified seeding cells for cartilage tissue engineering.
Objective To study the effect of adenovirus bone morphogenetic protein 2 gene(Ad-BMP-2) transfer inducing mesenchymal stem cells (MSCs) compounded with fibrin gel on repair of rabbit cartilage defect. Methods ①BMP-2 and collagen type Ⅱ in MSCs transferred by Ad-BMP-2 were examined by RT-PCR, aniline dyeing and immunohistochemical analysis in vitro. ②MSCs were cultured in fibrin gel for 9 days, and were examined with electron microscope. ③Fortytwo rabbits suffering from cartilage defect were divided into 3 groups:the defects were treated with Ad-BMP-2 transfer inducing MSCs compounded with fibrin in group A, with MSCs compounded with fibringel in group B and with no implants in group C as control. HE and aniline dyeing, immunohistochemical analysis and biomechanics study were carried out in the 4th, 8thand 12th weeks. Results ①The positive results were observed for BMP-2 and collagen type Ⅱ with RT-PCR on the 3rd day and 5th day respectively, being statisticallysignificant difference when compared with control group(P<0.05). ②Ad-BMP-2 transfer inducing MSCs cultured in fibrin gel were positively stained by aniline dyeing and immunohistochemstry. ③The therapy effect of group A was better than that of the other two groups in histology, biochemistry and biomechanics, and the biomechanic and histological features of repaired cartilage were similar to those of the natural cartilage. Conclusion Ad-BMP-2 can induce the expressionof collagen type Ⅱ and mucopolysaccharide in MSCs by secreting BMP-2, and can reconstruct articular cartilage defects better when compounded with fibrin gel.
ObjectiveTo observe and compare the effects of peptides on the repair of rabbit skull defects through two different binding modes of non-covalent and covalent, and the combination of carboxyl (-COOH) and amino (-NH2) groups with materials.MethodsTwenty-one 3-month-old male ordinary New Zealand white rabbits were numbered 1 to 42 on the left and right parietal bones. They were divided into 5 groups using a random number table, the control group (group A, 6 sides) and the material group 1, 2, 3, 4 (respectively group B, C, D, E, 9 sides in each group). All animals were prepared with 12-mm-diameter skull defect models, and bone morphogenetic protein 2 (BMP-2) non-covalently bound multiwalled carbon nanotubes (MWCNT)-COOH+poly (L-lactide) (PLLA), BMP-2 non-covalently bound MWCNT-NH2+PLLA, BMP-2 covalently bound MWCNT-COOH+PLLA, and BMP-2 covalently bound MWCNT-NH2+PLLA were implanted into the defects of groups B, C, D, and E, respectively. At 4, 8, and 12 weeks after operation, the samples were taken for CT scanning and three-dimensional reconstruction, the ratio of bone tissue regeneration volume to total volume and bone mineral density were measured, and the histological observation of HE staining and Masson trichrome staining were performed to quantitatively analyze the volume ratio of new bone tissue.ResultsCT scanning and three-dimensional reconstruction showed that with the extension of time, the defects in groups A-E were filled gradually, and the defect in group E was completely filled at 12 weeks after operation. HE staining and Masson trichrome staining showed that the volume of new bone tissue in each group gradually increased with time, and regenerated mature bone tissue appeared in groups D and E at 12 weeks after operation. Quantitative analysis showed that at 4, 8, and 12 weeks after operation, the ratio of bone tissue regeneration volume to total volume, bone mineral density, and the volume ratio of new bone tissue increased gradually over time; and at each time point, the above indexes increased gradually from group A to group E, and the differences between groups were significant (P<0.05).ConclusionThrough covalent binding and using -NH2 to bound peptides with materials, the best bone repair effect can be achieved.
ObjectiveTo compare the osteogenic effect of bone marrow mesenchymal stem cells (BMSCs) transfected by adenovirus-bone morphogenetic protein 2-internal ribosome entry site-hypoxia inducible factor 1αmu (Ad-BMP-2-IRES-HIF-1αmu) and by Ad-cytomegalovirus (CMV)-BMP-2-IRES-human renilla reniformis green fluorescent protein 1 (hrGFP-1) single gene so as to optimize the source of osteoblasts. MethodsBMSCs were separated and cultured from 1-month-old New Zealand white rabbit. The BMSCs at passage 3 were transfected by virus. The experiment was divided into 4 groups (groups A, B, C, and D) according to different virus: BMSCs were transfected by Ad-BMP-2-IRES-HIF-1αmu in group A, by Ad-CMV-BMP-2-IRES-hrGFP-1 in group B, by Ad-CMV-IRES-hrGFP-1 in group C, and BMSCs were not transfected in group D. The optimum multiplicity of infection (MOI) (50, 100, 150, and 200) was calculated and then the cells were transfected by the optimum MOI, respectively. The expression of BMP-2 gene was detected by immunohistochemistry staining after transfected, the expressions of BMP-2 protein and HIF-1α protein were detected by Western blot method. The osteogenic differentiation potential was detected by alkaline phosphatase (ALP) activity and Alizarin red staining. ResultsThe optimum MOI of groups A, B, and C was 200, 150, and 100, respectively. The expression of BMP-2 was positive in groups A and B, and was negative in groups C and D by immunohistochemistry staining; the number of positive cells in group A was more than that in group B (P ﹤ 0.05). The expression of BMP-2 protein in groups A and B was significantly higher than that in groups C and D (P ﹤ 0.05), group A was higher than group B (P ﹤ 0.05). The expression of HIF-1α protein in group A was significantly higher than those in the other 3 groups (P ﹤ 0.05), no significant difference was found among the other 3 groups (P ﹥ 0.05). ALP activity in groups A and B was significantly higher than that in groups C and D (P ﹤ 0.05), group A was higher than group B (P ﹤ 0.05). Calcium nodules could be seen in groups A and B, but not in groups C and D; the number of calcium nodules in group A was higher than that in group B (P ﹤ 0.05). ConclusionThe expression of BMP-2 and osteogenic effect of BMSCs transfected by Ad-BMP-2-IRES-HIF-1αmu (double genes in single carrier) are higher than those of BMSCs transfected by Ad-CMV-BMP-2-IRES-hrGFP-1 (one gene in single carrier).
Objective To investigate the role of bone morphogenetic protein 2 (BMP-2) combined with hypoxic microenvironment in chondrogenic phenotype differentiation of bone marrow mesenchymal stem cells (BMSCs) of rat in vitro. Methods BMSCs were harvested from 4-week-old female Sprague Dawley rats. BMSCs at passage 2 were divided into 4 groups according different culture conditions: normoxia control group (group A), normoxia and BMP-2 group (group B), hypoxia control group (3% oxygen, group C), and hypoxia and BMP-2 group (group D). Then the cellular morphology was observed under inverted phase contrast microscope. Alcian blue immunohistochemical staining was used to detect the glycosaminoglycans (GAG), Western blot to detect collagen type II and hypoxia-inducible factor 1α (HIF-1α), and RT-PCRto detect the expressions of chondrogenic related genes, osteogenic related genes, and hypoxia related genes. Results At 21 days after induction of BMP-2 and hypoxia (group D), BMSCs became round, cell density was significantly reduced, and lacuna-l ike cells were wrapped in cell matrix, while the changes were not observed in groups A, B, and C. Alcian blue staining in group D was significantly bluer than that in other groups, and staining became darker with induction time, and the cells were stained into pieces of deeply-stained blue at 21 days. Light staining was observed in the other groups at each time point. The expression level of collagen type II protein in group D was significantly higher than those in other groups (P lt; 0.05). HIF-1α protein expression levels of groups C and D were significantly higher than those of groups A and B (P lt; 0.05). The expressions of collagen II α1 (COL2 α1) and aggrecan mRNA (chondrogenic related genes) were highest in group D, while the expressions of COL1 α1, alkaline phosphatase, and runt-related transcri ption factor 2 mRNA (osteogenic related genes) were the highest in group B (P lt; 0.05). Compared with groups A and B, HIF-1α (hypoxic related genes) in groups C and D significantly increased (P lt; 0.05). Conclusion BMP-2 combined with hypoxia can induce differentiation of BMSCs into the chondrogenic phenotype, and inhibit osteoblast phenotype differentiation. HIF-1α is an important signaling molecule which is involved in the possible mechanism to promote chondrogenic differentiation process.
ObjectiveTo investigate the bone regeneration potential of cell-tissue engineered bone constructed by human bone marrow mesenchymal stem cells (hBMSCs) expressing the transduced human bone morphogenetic protein 2 (hBMP-2) gene stably. MethodsThe full-length hBMP-2 gene was cloned from human muscle tissues by RT-PCR and connected into a vector to consturct a eukaryotic expression system. And then the gene expression system was transduced to hBMSCs with lipidosome. hBMSCs were transfected by hBMP-2 gene (experimental group) and by empty plasmid (negative control group), untransfected hBMP-2 served as blank control group. RT-PCR, dot-ELISA, immunohistochemical analysis and ALP activity were performed to compare and evaluate the situation of hBMP-2 expression and secretion after transfection. hBMSCs transfected by hBMP-2 gene were seeded on hydroxyapatite (HA) and incubated for 4 days to construct the hBMP-2 gene modified tissue engineered bone, and then the tissue engineered bone was observed by the inverted phase contrast microscope and scanning electron microscope. Then the hBMP-2 gene modified tissue engineered bone (group A, n=3), empty plasmid transfected hBMSCs seeded on HA (group B, n=3), hBMSCs suspension transfected by hBMP-2 gene (group C, n=3), and hBMP-2 plasmids and lipidosome (group D, n=3) were implanted into bilateral back muscles of nude mice. The osteogenic activity was detected by HE staining and alcian blue staining after 4 weeks. ResultsAt 48 hours and 3 weeks after transfection, RT-PCR and dot-ELISA results indicated that the transfected hBMSCs could express and secrete active and exogenous hBMP-2 stably. The immunohistochemical staining was positive, and the ALP activity in the transfected hBMSCs was significantly higher than that in two control groups (P < 0.05). The transfected hBMSCs had a good attaching and growing on the three-demension suface of HA under inverted phase contrast microscope and scanning electron microscope. In vivo study indicated that a lot of new bone formation was obviously found at 4 out of 6 sides of back muscles in group A. Some new bone formation at both sides of back muscles was observed in 1 of 3 mice in group B. No new bone formation was found in group C. A few new bone formation was observed at one side of back muscles in group D. ConclusionThe tissue engineered bone constructed by hBMP-2 gene modified hBMSCs and HA is able to express and secrete active hBMP2 stably and can promote new bone formation effectively in muscles of nude mice.