【Abstract】 Objective To observe the distribution feature of nerve bundles in C7 nerve anterior and posterior division end. Methods The brachial plexus specimen was harvested from 1 fresh adult cadaver. After C7 nerve was confirmed, the distal end of anterior and posterior division was dissected and embedded by OCT. Then the samples were serially horizontally sliced with each 10 μm deep. After acetylcholinesterase (AChE) histochemical staining, the stain characteristics of different nerve fiber bundles were observed and amount of the nerve fiber bundles were counted under optic-microscope. At last, the imaging which were collected were three-dimensional (3-D) reconstructed by using Amira 4.1 software. Results There was no obvious difference in the stain between the anterior and posterior divisions. The running of the nerve fiber bundles were dispersive from proximal end of nerve to distal end of nerve. Nerve fiber bundles of anterior division were mainly sensor nerve fiber bundles, which located in medial side. Nerve fiber bundles of posterior division were mainly moter nerve fiber bundles, having no regularity in the distribution of nerve fiber bundles. The total number of nerve fiber bundles in distal end of anterior division was 7.85 ± 1.04, the number of motor nerve fiber bundles was 2.85 ± 0.36, and the number of sensor nerve fiber bundles was 5.13 ± 1.01. The total number of nerve fiber bundles in distal end of posterior division was 9.79 ± 1.53, the number of motor nerve fiber bundles was 6.00 ± 0.69, and the number of sensor nerve fiber bundles was 3.78 ± 0.94. There were significant differences in the numbers of motor and sensor nerve fiber bundles between anterior and posterior divisions (P lt; 0.05). The microstructure 3-D model was reconstructed based on serial slice through Amira 4.1. The intercross and recombination process of nerves bundles could be observed obviously. The nerve bundle distribution showed cross and combination. Conclusion Nerve fiber bundles of anterior division are mainly sensor nerve fiber bundles and locate in medial side. Nerve fiber bundles of posterior division are mainly motor nerve fiber bundles, which has no regularity in the distribution of nerve fiber bundles. The 3-D reconstruction can display the internal structure feature of the C7 division end.
Objective〓〖WTBZ〗To assess treating results of functional reconstruction of irrecoverable partial injury of brachial plexus and to improve the function ofinjured upper extremity. Methods Seventiy-nine cases with irrecoverable partial injury of brachial plexus were treated in transfer of muscle (tendon) or by fuctional anthrodesis (fixation of tendon) from January 1984 to June 2003. According to the evaluation criterion by American Shoulder and Elbow, Hand Association,all patients were followed up in motion of reconstructive joint and daily activities after operation for 1 year to 19 years. The effect of the operation was comprehensively scored and evaluated. Results Final results in 54 caseswere as follows: 30 patients with good results, 19 patients with fair results, and 5 with poor results. The results demonstrated some points as follow: ①if the shoulder was instable, athroedesis of shoulder would be a better choice;②the flexion of the elbow joint should be only reconstructed with the dynamic reconstructive methods. The reconstruction of flexion of elbow by transfer of pectoral major muscle was more effective than that by transfer of flexor carpi ulnaris muscle; ③the dynamic reconstruction of extension of digital and carpi was better than that of flexion of digital and opposition function of the thumb; ④the supination of the forearm was effectively reconstructed by transfer of flexorcarpi ulnaris muscle. Pronation teres muscle should be studied more in reconstruction of supination function of the forearm.
ObjectiveTo evaluate the methods and effectiveness of contralateral C7 nerve root and multiple nerves transfer for the treatment of brachial plexus root avulsion. MethodsBetween June 2006 and June 2010, 23 patients with brachial plexus root avulsion were treated. There were 20 males and 3 females, aged 17 to 42 years (mean, 27.4 years). The time from injury to operation was 4 to 12 months (mean, 5.9 months). In 16 patients having no associated injury, the first stage procedure of contralateral C7 nerve root transfer and accessory nerve transfer to suprascapular nerve or phrenic nerve transfer to anterior upper trunk was performed, and the second stage procedure of the contralateral C7 nerve root transfer to median nerve and intercostal nerve transfer to axillary nerve was performed. In 4 patients having phrenic nerve and accessory nerve injuries, the first stage procedure of the contralateral C7 nerve root transfer and second stage procedure of the contralateral C7 nerve root transfer to median nerve and musculocutaneous nerve were performed. In 3 patients having hemothorax, pneumothorax, and rib fractures, the first stage procedure of the contralateral C7 nerve root transfer and accessory nerve transfer to suprascapular nerve, and the second stage procedure of the contralateral C7 nerve root transfer to median nerve and musculocutaneous nerve were performed. The British Medical Research Council (MRC) sensory grading (S0-S4) and modified muscle strength grading standard (M0-M5) were used for comprehensive assessment of limb and shoulder abduction, elbow/biceps muscle strength, flexor wrist and finger muscle strength and median nerve sensory recovery. ResultsTwenty-three patients were followed up 3-4.5 years (mean, 3.4 years). At 3 years after operation, the shoulder abduction reached 0-82°(mean, 44°). In 16 patients having no associated injuries, the shoulder abduction was more than 30°in 13 cases, and was more than 60°in 3 cases; in 3 patients having hemothorax, pneumothorax, and rib fractures, the shoulder abduction was more than 30°; and in 4 patients having phrenic nerve and accessory nerve injuries, the shoulder abduction was 0°. The muscle strength of elbow/biceps was M3 or more than M3 in 9 cases, was M1-M2 in 8 cases, and was M0 in 6 cases; the muscle strength of flexor wrist or finger was M3 or more than M3 in 7 cases, was M1-M2 in 11 cases, and was M0 in 5 cases. Median nerve sensory recovery was S3 or more than S3 in 11 cases, was S1-S2 in 7 cases, and was S0 in 5 cases. After 3 years, affected limb had locomotor activity in 11 patients, affected limb had activities driven by the contralateral latissimus dorsi muscle contraction in 12 patients. ConclusionContralateral C7 nerve root and multiple nerves transfer is a good method to treat brachial plexus root avulsion.
The results of nerve transposition for root avulsion of brachial plexas in 21 cases were reported. The methods of the nerve transposition were divided into four groups as followings: By transfer of phrenic nerve, accesory nerve, the motor branches of cervical plexus and intercostal nerves in cease; By transfer of phrenic nerve, accessory nerve and the motor branches of cervical plexus in 6 cases; By transfer of phrenic nerve and accessory nerve in 9 cases, and by transfer of phrenic nerve or the motor branches of cervical plexus or intercostal nerve in 5 cases. During operation, in 1 cases variation of the brachial plexus was found. Injury to the subclavian artery occurred in 4 cases and they were repaired, which is good for the blood circulation of the upper arm and nerve regeneration. Nineteen cases were followed up with good results. The overall excellent and good rate was 73.7%. It was considered that transposition of nerve should be a routine operation for the treatment of root avulsion of brachial plexus and the accompanied arterial injury should be repaired at the same time during operation, and the latter would be advantageous to enhance functional recovery of nerve.
Objective To investigate the quantity and distribution of motor fiber of rat’s C7 nerve root. Methods Motor fiber quantity and section area in the main nerves of the upper extremity and the fascicles of C7 in 30 SD rats were analyzed.Results Fascicles and certain amount (207) of motor fibers from the anterior division of C7 were distributed to musculocutaneous nerve and median nerve, the orientation of these fibers were not clear. The ones (323) from posterior division were to the axillary, radial, and dorsal thoracic nerves, thus the orientation of these fascicles was relatively definite. Conclusion Thedistribution of the motor fibers and fascicles in the divisions of C7 in rat is similar to human beings, so rat is a relatively good model for the study of selective C7 nerve root transfer.
Objective To investigate the sensation of the fingers innervated by the brachial plexus roots and provide the theoretic basis for diagnosis of a brachial plexus injury. Methods From June 2003 to January 2005,10 patients (8 males, 2 females; age,18-47 years) with complete brachial plexus avulsion were involved in this study, who underwent thecontralateral C7 nerve root transfer. The latency and amplitude of the sensory nerve actiopotential(SNAP) were record at the C5 T1 nerve roots when stimulation was given at the fingers.Results When the thumb and the index finger were stimulated and SNAP was recorded at all the roots of the brachial plexus in all the patients, we found that there was a higher amplitude and a shorter latency at the C5-7 roots than at the C8 and T1 roots(P<0.05). When the middle finger was stimulated and SNAP was recorded at the C7,8 and T1 roots, we found that there was the highest amplitude and the shortest laency at the C7 root(P<0.01). When the ring finger was stimulated and SNAP was recorded at the C7,8and T1 roots, we found that there was a higher amplitude and a shorter latency at the C8 and T1 roots than at the C7 root(P<0.01). When the little finger was stimulated and SNAP was recorded at the C7,8and T1 roots, we found that there was the highest amplitude and the shortest latency at the T1 root(P<0.01). ConclusionThe sense of the thumband the index finger is mainly nnervated by the C5-7 roots, the middle finger sense is mainly innervated by the C7 root, the ring finger sense is mainly innervated by the C8 and T1 roots, and the little finger sense is mainly innervated by the T1 root.
Objective To explore the changes of morphology and ventricornual motor neuronsin SD rats’ ventral horn of spinal cord after radiated as the therapy protocol for breast cancer, to discover the rule of radiationinduced injury of brachialplexus, and also if there exits the reversible conversion in neurons. Methods Twenty SD rats were selected. The left side of the rats was used as the radiation side, and the right side as the control side. The RIBPI animal models were established by divideddose of radiation. Using 2 Gy/time and 5 times/week, a total administered dose reached 30 Gy after 3 weeks. The behaviour of the rats was observed after radiation. At 3, 5, 7 and 9 weeks after the last radiation (n=4), the wet weights of biceps brachii muscle, upperlimb circumference and compound action potential were examined; the pathological changes of biceps brachiimuscle, the morphological changes, counts of the motor neurons in ventral horn and axons of bilateral spinal cord were observed by HE staining, argentums staining and toluidine blue staining. Results The rats showed lameness and a “claw hand” 3 weeks after radiation. Compared with control side, thewet weights of biceps brachii muscle and upperlimb circumference were significantly reduced, meanwhile, the compound action potential significantly decreased, and its latent period was also significantly prolonged 3, 5, 7 and 9 weeks (Plt;0.05). The histological observation: Musculocutaneous nerve showed decreased medullated fibers, heterogeneous ditribution and decreased density, thin myelin sheath, damaged nerve structure and collagen hyperplasia; biceps brachii muscle showed degeneration, fiber breakage and inflammatory cell infiltration; The account of motor neurons in ventral horn was significantly decreased in the radiation side with time extending, the sign of cell death, such as, the neurons crimple, and karyolysis were observed(Plt;0.05). Conclusion Large dose of X-ray can inducedbrachial plexus injury, and the lameness, a “claw hand”, biceps brachii muscle atrophy and the compound action potential abnormality. The account of motor neurons in ventral horn was significantly decreased. The motor neurons showed oxonal degeneration and myelinec degeration.
OBJECTIVE To observe the ultrastructural changes and number of satellite cells in different muscles with different denervation interval and investigate the mechanism of denervation atrophy. METHODS Muscles of different denervation interval were harvested, which were 6 biceps brachii and 6 abductor digiti minimi. The ultrastructure of the samples were observed under transmission electron microscope. The number of nucleus and satellite cells were counted to calculate the percentage content of satellite cells. RESULTS In early stage of denervation, the myofilament and sarcomere of the majority were well oriented. The nucleoli of some muscle cell nucleus were enlarged and pale. Vacuolarization was also seen in some mitochondria. There was no obvious proliferation of collagen fiber around myofibers. After denervation of half a year, rupture and disorientation of myofilament was seen. The nucleus became smaller, dark stained, and some of them were condensed. There was proliferation of fibroblasts, adipose cells and collagen fibers around myofibers. Motor endplate was not recognized one year after denervation. In the early stage of denervation, satellite cell percentage of the two muscles was relatively high. It then declined with time. One year after denervation, satellite cells were scarcely detected. Comparison of the curves for satellite cell declination in two muscles revealed that the declination of the abductor digiti minimi was faster than that of biceps brachii. Decrease of the former started 3 months after denervation, while the latter started after 6 months. CONCLUSION Disappearing of motor endplate and proliferation of collagen fibers are main factors that affect the treatment outcome in late cases. Decrease of satellite cell number is another cause. The correlation of less satellite cell in abductor digiti minimi and poorer recovery of hand intrinsic muscles indicates that increment of satellite cells in long-term denervated muscles may be one of the effective measures to improve treatment outcome.
Objective To study and compare the effect of end-to-end and end-to-side neurorrhaphy between the reci pient’s musculocutaneous nerve and the donor’s ulnar nerve, and to observe the regeneration of peri pheral nerve and muscle refection. Methods Sixty male SD rats (weighing 200-250 g) were randomized into 2 groups (n=30 per group), and made the musculocutaneous nerve injury model. In group A, the donor’s nerve was transected for end-to-end neurorrhaphy.In group B, an epineurial window was exposed and the distal end of the muscle branch of musculocutaneous nerve was sutured to the side of the ulnar nerve. Electromyography was performed, biceps wet weight ratio, muscle fiber cross-sectional area, and count of myel inated nerve fiber (CMF) were measured at 4 and 12 weeks postoperatively. The behavior changes of the rats were observed. Results At 4 weeks, the nerve conduction velocity (NCV) and the latency ampl itude (AMP) of group A were significantly higher than those of group B (P lt; 0.05); at 12 weeks, there was no significant difference in the NCV and AMP between groups A and B (P gt; 0.05). At 4 and 8 weeks, there was no significant difference in biceps wet weight ratio and muscle fiber cross-sectional area between groups A and B (P gt; 0.05). At 4 weeks, the CMF was 230.15 ± 60.25 in group A and 160.73 ± 48.77 in group B, showing significant difference (P lt; 0.05); at 12 weeks, it was 380.26 ± 10.01 in group A and 355.63 ± 28.51 in group B, showing no significant difference (P gt; 0.05). Conclusion Both end-to-end and end-to-side neurorrhaphy have consistent long-term effect in repair of brachial plexus upper trunk injury.
The report of brachial plexus injuries following radical mastectomy in patients with breast cancer was rare even though the operation was a main measure in treating with breast cancer. Nine patients treated from Oct. 1989 to Feb.1991 were summarized. The results were not ideal.