Brain-computer interface (BCI) has great potential to replace lost upper limb function. Thus, there has been great interest in the development of BCI-controlled robotic arm. However, few studies have attempted to use noninvasive electroencephalography (EEG)-based BCI to achieve high-level control of a robotic arm. In this paper, a high-level control architecture combining augmented reality (AR) BCI and computer vision was designed to control a robotic arm for performing a pick and place task. A steady-state visual evoked potential (SSVEP)-based BCI paradigm was adopted to realize the BCI system. Microsoft's HoloLens was used to build an AR environment and served as the visual stimulator for eliciting SSVEPs. The proposed AR-BCI was used to select the objects that need to be operated by the robotic arm. The computer vision was responsible for providing the location, color and shape information of the objects. According to the outputs of the AR-BCI and computer vision, the robotic arm could autonomously pick the object and place it to specific location. Online results of 11 healthy subjects showed that the average classification accuracy of the proposed system was 91.41%. These results verified the feasibility of combing AR, BCI and computer vision to control a robotic arm, and are expected to provide new ideas for innovative robotic arm control approaches.
目的:从法医学角度探讨医疗纠纷的成因并提出相关防范措施。方法:对2000年~2005年四川大学华西法医学鉴定中心鉴定的共288例医疗纠纷资料进行回顾性整理分析。结果:近年来医疗纠纷有逐年增多的趋势。医疗纠纷的常见原因有医德医风问题、医疗技术或设备不过关、医务人员的失职或失误等。低级别医疗机构医疗纠纷所占比例相对较高。外科、妇产科等科室医疗纠纷所占比例较高。结论:通过增强医德修养,提高医务人员技术水平,强化医务人员自我保护意识,改善医患关系等措施,能够减少医疗纠纷发生。
Individuals with motor dysfunction caused by damage to the central nervous system are unable to transmit voluntary movement commands to their muscles, resulting in a reduced ability to control their limbs. However, traditional rehabilitation methods have problems such as long treatment cycles and high labor costs. Functional electrical stimulation (FES) based on brain-computer interface (BCI) connects the patient’s intentions with muscle contraction, and helps to promote the reconstruction of nerve function by recognizing nerve signals and stimulating the moving muscle group with electrical impulses to produce muscle convulsions or limb movements. It is an effective treatment for sequelae of neurological diseases such as stroke and spinal cord injury. This article reviewed the current research status of BCI-based FES from three aspects: BCI paradigms, FES parameters and rehabilitation efficacy, and looked forward to the future development trend of this technology, in order to improve the understanding of BCI-based FES.
Brain-controlled wheelchair (BCW) is one of the important applications of brain-computer interface (BCI) technology. The present research shows that simulation control training is of great significance for the application of BCW. In order to improve the BCW control ability of users and promote the application of BCW under the condition of safety, this paper builds an indoor simulation training system based on the steady-state visual evoked potentials for BCW. The system includes visual stimulus paradigm design and implementation, electroencephalogram acquisition and processing, indoor simulation environment modeling, path planning, and simulation wheelchair control, etc. To test the performance of the system, a training experiment involving three kinds of indoor path-control tasks is designed and 10 subjects were recruited for the 5-day training experiment. By comparing the results before and after the training experiment, it was found that the average number of commands in Task 1, Task 2, and Task 3 decreased by 29.5%, 21.4%, and 25.4%, respectively (P < 0.001). And the average number of commands used by the subjects to complete all tasks decreased by 25.4% (P < 0.001). The experimental results show that the training of subjects through the indoor simulation training system built in this paper can improve their proficiency and efficiency of BCW control to a certain extent, which verifies the practicability of the system and provides an effective assistant method to promote the indoor application of BCW.
Brain-computer interface (BCI) is a revolutionizing technology that disrupts traditional human-computer interaction by establishing direct communication and control between the brain and computer, bypassing the peripheral nervous and muscular systems. With the rapid advancement of BCI technology, growing application demands, and an increasing need for specialized BCI professionals, a new academic major—BCI major—has gradually emerged. However, few studies to date have discussed the interdisciplinary nature and training framework of this emerging major. To address this gap, this paper first introduced the application demands of BCI, including the demand for BCI technology in both medical and non-medical fields. The paper also described the interdisciplinary nature of the BCI major and the urgent need for specialized professionals in this field. Subsequently, a training program of the BCI major was presented, with careful consideration of the multidisciplinary nature of BCI research and development, along with recommendations for curriculum structure and credit distribution. Additionally, the facing challenges of the construction of the BCI major were analyzed, and suggested strategies for addressing these challenges were offered. Finally, the future of the BCI major was envisioned. It is hoped that this paper will provide valuable reference for the development and construction of the BCI major.