Cardiopulmonary resuscitation (CPR) is a very important treatment after cardiac arrest. The optimal treatment strategy of CPR is uncertain. With the accumulation of clinical medical evidence, the CPR treatment recommendations have been changed. This article will review the current hot issues and progress, including the pathophysiological mechanisms of CPR, how to achieve high-quality chest compression, how to achieve CPR quality monitoring, how to achieve optimal CPR for different individuals and how to use antiarrhythmic drugs.
The body of patient undergoing cardiopulmonary resuscitation after cardiac arrest experiences a process of ischemia, hypoxia, and reperfusion injury. This state of intense stress response is accompanied with hemodynamic instability, systemic hypoperfusion, and subsequent multiple organ dysfunction, and is life-threatening. Pulmonary vascular endothelial injury after cardiopulmonary resuscitation is a pathological manifestation of lung injury in multiple organ injury. Possible mechanisms include inflammatory response, neutrophil infiltration, microcirculatory disorder, tissue oxygen uptake and utilization disorder, etc. Neutrophils can directly damage or indirectly damage lung vascular endothelial cells through activation and migration activities. They also activate the body to produce large amounts of oxygen free radicals and release a series of damaging cytokines that further impaire the lung tissue.
In November 2017, the American Heart Association updated the pediatric basic life support and cardiopulmonary resuscitation (CPR) quality. The new guidelines focused on the clinical value of chest compression-only CPR versus CPR using chest compressions with rescue breaths in children, rather than a comprehensive revision of the 2015 edition guidelines. The Pediatric Task Force of the International Liaison Committee on Resuscitation updated part content of the guidelines according to the continuous evidence review process. Guidelines recommend CPR using chest compressions with rescue breaths should be provided for infants and children with cardiac arrest. Bystanders provide chest compressions if they are unwilling or unable to deliver rescue breaths. This article mainly interprets the updated content.
The International Liaison Committee on Resuscitation published the 2022 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations in Circulation, Resuscitation, and Pediatrics in November 2022. This consensus updates and recommends important aspects of cardiopulmonary resuscitation based on recently published resuscitation evidence. Herein, we interpret the consensus focusing on adult cardiopulmonary resuscitation including basic life support (ventilation techniques, compressions pause, transport strategies during resuscitation, and resuscitation procedures in drowning), advanced life support (target temperature management, point-of-care ultrasound as a diagnostic tool during cardiac arrest, vasopressin and corticosteroids for cardiac arrest, and post-cardiac arrest coronary angiography), cardiopulmonary resuscitation education/implementation/team (survival prediction after resuscitation of patients with in-hospital cardiac arrest, basic life support training, advanced life support training, blended learning for life support education, and faculty development approaches for life support courses) and recovery positions on rescue scene. This consensus provides important guidance for clinical practice and clear hints for the development of clinical research.
The American Heart Association (AHA) released the 2017 American Heart Association Focused Update on Adult Basic Life Support and Cardiopulmonary Resuscitation Quality (2017 AHA guidelines update) in November 2017. The 2017 AHA guidelines update was updated according to the rules named " the update of the guideline is no longer released every five years, but whenever new evidence is available” in the 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. The updated content in this guideline included five parts: dispatch-assisted cardiopulmonary resuscitation (CPR), bystander CPR, emergency medical services - delivered CRP, CRP for cardiac arrest, and chest compression - to - ventilation ratio. This review will interpret the 2017 AHA guidelines update in detail.
ObjectiveTo analyze the long-term effect on cardiopulmonary resuscitation skill between video-led and scene simulation training and traditional instructor-led courses in medical student with eight-year program.MethodsNinety-nine medical students with eight-year program who studied in Peking Union Medical College were trained in cardiopulmonary resuscitation skill from January to February 2018. They were randomly divided into two groups, 53 students participated in basic life support course training, which belonged to video-led and scene simulation training as the trial group, and 46 students were trained by traditional instructor-led courses as the control group. In January 2019, the above 99 students were re-evaluated for cardiopulmonary resuscitation, and the outcome of cardiopulmonary resuscitation skill test in total scores and sub-items scores between two groups were compared. The data were analyzed using t test and Wilcoxon rank sum test.ResultsThe total average scores of the trial group (8.02±1.11) was higher than that of the control group (6.85±1.50) (P<0.05). The sub-items scores of the trial group in the three aspects of on-site assessment, chest compressions and simple respirators (1.64±0.37, 3.38±0.46, 1.52±0.58) were higher than those of the control group (1.33±0.45, 2.80±0.76, 1.19±0.58) (P<0.05). In terms of opening airway, there was no significant difference in scores between the two groups (1.02±0.47 vs. 1.10±0.45, P>0.05). The excellent rate of the trial group (60.3%) was significantly higher than that of the control group (30.4%) (P<0.05), and the unqualified rate (5.6%) was significantly lower than that of the control group (21.7%) (P<0.05).ConclusionsThe video-led and scene simulation training has a better effect on cardiopulmonary resuscitation skills acquisition and long-term maintenance than traditional instructor-led courses for medical student with eight-year program.
Brain injury after cardiopulmonary resuscitation is closely related to the survival rate and prognosis of neurological function of cardiac arrest (CA) patients. Recently, the American Academy of Neurology (AAN) published a practice guideline which had updated the evaluation of different treatments for reducing brain injury following cardiopulmonary resuscitation. In order to master and transmit AAN 2017 practice guideline on reducing brain injury following cardiopulmonary resuscitation, this paper interprets the new AAN clinical practice guideline to assist Chinese clinicians for better studying the guideline.
Extracorporeal cardiopulmonary resuscitation (ECPR) is a salvage therapy for patients suffering cardiac arrest refractory to conventional resuscitation, and provides circulatory support in patients who fail to achieve a sustained return of spontaneous circulation. ECPR serves as a bridge therapy that maintains organ perfusion whilst the underlying etiology of the cardiac arrest is determined and treated. Increasing recognition of the survival benefit associated with ECPR has led to increased use of ECPR during the past decade. Commonly used indications for ECPR are: age<70 years, initial rhythm of ventricular fibrillation or ventricular tachycardia, witnessed arrest, bystander cardiopulmonary resuscitation within 5 min, failure to achieve sustained return of spontaneous circulation within 15 min of beginning cardiopulmonary resuscitation. This review provides an overview of ECPR utilization, recent outcomes, risk factors, and complications of ECPR. Identifying ECPR indications, rapid deployment of extracorporeal life support equipment, and high-quality ECPR management strategies are of paramount importance to improve survival.
American Heart Association issued American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care in October 2020. A sixth link, recovery, has been added to both the adult out-of-hospital cardiac arrest chain and in-hospital cardiac arrest chain in this version of the guidelines to emphasize the importance of recovery and survivorship for resuscitation outcomes. Analogous chains of survival have also been developed for adult out-of-hospital cardiac arrest and in-hospital cardiac arrest. The major new and updated recommendations involve the early initiation of cardiopulmonary resuscitation by lay rescuers, early administration of epinephrine, real-time audiovisual feedback, physiologic monitoring of cardiopulmonary resuscitation quality, double sequential defibrillation not supported, intravenous access preferred over intraosseous, post-cardiac arrest care and neuroprognostication, care and support during recovery, debriefings for rescuers, and cardiac arrest in pregnancy. This present review aims to interpret these updates by reviewing the literature and comparing the recommendations in these guidelines with previous ones.
ObjectiveTo investigate the effects of different peak flow on the airway pressure to explore a preferable value of peak flow in ventilation during cardiopulmonary resuscitation (CPR) under volume control ventilation (VCV) mode and decreasing-wave. Methods30 patients who underwent CRP in the emergency unit between January 2012 and 2014 was recruited in the study. When the chest compressions came into a stable state by a same doctor,the peak flow was set at 50 L/min and 30 L/min respectively while other parameters fixed in the same patient. Then the pressure-time curve of a respiratory cycle was randomly frozen to achieve the highest peak pressure in inspiratory phase. ResultsThe highest peak airway pressures were (54.1±4.9)cm H2O and (35.5±5.3)cm H2O when the peak flow were set at 50 L/min and 30 L/min respectively with significant difference. The incidence of peak airway pressure greater than 40 cm H2O was 96.7% and 26.7%,and the incidence of peak airway pressure greater than 50 cm H2O was 76.7% and 0%,respectively. Compared with 50 L/min,the peak flow of 30 L/min obviously reduced the peak pressure (P=0.000). ConclusionIn the mechanical ventilation during CPR using VCV mode and decreasing-wave,compared with peak flow of 50 L/min,smaller peak flow of 30 L/min can significantly reduce peak airway pressure,and significantly reduce the adverse effects to ventilation by repeated violent changes in airway pressure caused by continuing chest compressions,and make airway peak pressure under 40 cm H2O in most patients,so it is a reasonable and safe choice.