High resolution (HR) magnetic resonance images (MRI) or computed tomography (CT) images can provide clearer anatomical details of human body, which facilitates early diagnosis of the diseases. However, due to the imaging system, imaging environment and human factors, it is difficult to obtain clear high-resolution images. In this paper, we proposed a novel medical image super resolution (SR) reconstruction method via multi-scale information distillation (MSID) network in the non-subsampled shearlet transform (NSST) domain, namely NSST-MSID network. We first proposed a MSID network that mainly consisted of a series of stacked MSID blocks to fully exploit features from images and effectively restore the low resolution (LR) images to HR images. In addition, most previous methods predict the HR images in the spatial domain, producing over-smoothed outputs while losing texture details. Thus, we viewed the medical image SR task as the prediction of NSST coefficients, which make further MSID network keep richer structure details than that in spatial domain. Finally, the experimental results on our constructed medical image datasets demonstrated that the proposed method was capable of obtaining better peak signal to noise ratio (PSNR), structural similarity (SSIM) and root mean square error (RMSE) values and keeping global topological structure and local texture detail better than other outstanding methods, which achieves good medical image reconstruction effect.
Aiming at the problem that the unbalanced distribution of data in sleep electroencephalogram(EEG) signals and poor comfort in the process of polysomnography information collection will reduce the model's classification ability, this paper proposed a sleep state recognition method using single-channel EEG signals (WKCNN-LSTM) based on one-dimensional width kernel convolutional neural networks(WKCNN) and long-short-term memory networks (LSTM). Firstly, the wavelet denoising and synthetic minority over-sampling technique-Tomek link (SMOTE-Tomek) algorithm were used to preprocess the original sleep EEG signals. Secondly, one-dimensional sleep EEG signals were used as the input of the model, and WKCNN was used to extract frequency-domain features and suppress high-frequency noise. Then, the LSTM layer was used to learn the time-domain features. Finally, normalized exponential function was used on the full connection layer to realize sleep state. The experimental results showed that the classification accuracy of the one-dimensional WKCNN-LSTM model was 91.80% in this paper, which was better than that of similar studies in recent years, and the model had good generalization ability. This study improved classification accuracy of single-channel sleep EEG signals that can be easily utilized in portable sleep monitoring devices.
This study aims to optimize surface electromyography-based gesture recognition technique, focusing on the impact of muscle fatigue on the recognition performance. An innovative real-time analysis algorithm is proposed in the paper, which can extract muscle fatigue features in real time and fuse them into the hand gesture recognition process. Based on self-collected data, this paper applies algorithms such as convolutional neural networks and long short-term memory networks to provide an in-depth analysis of the feature extraction method of muscle fatigue, and compares the impact of muscle fatigue features on the performance of surface electromyography-based gesture recognition tasks. The results show that by fusing the muscle fatigue features in real time, the algorithm proposed in this paper improves the accuracy of hand gesture recognition at different fatigue levels, and the average recognition accuracy for different subjects is also improved. In summary, the algorithm in this paper not only improves the adaptability and robustness of the hand gesture recognition system, but its research process can also provide new insights into the development of gesture recognition technology in the field of biomedical engineering.
Manual segmentation of coronary arteries in computed tomography angiography (CTA) images is inefficient, and existing deep learning segmentation models often exhibit low accuracy on coronary artery images. Inspired by the Transformer architecture, this paper proposes a novel segmentation model, the double parallel encoder u-net with transformers (DUNETR). This network employed a dual-encoder design integrating Transformers and convolutional neural networks (CNNs). The Transformer encoder transformed three-dimensional (3D) coronary artery data into a one-dimensional (1D) sequential problem, effectively capturing global multi-scale feature information. Meanwhile, the CNN encoder extracted local features of the 3D coronary arteries. The complementary features extracted by the two encoders were fused through the noise reduction feature fusion (NRFF) module and passed to the decoder. Experimental results on a public dataset demonstrated that the proposed DUNETR model achieved a Dice similarity coefficient of 81.19% and a recall rate of 80.18%, representing improvements of 0.49% and 0.46%, respectively, over the next best model in comparative experiments. These results surpassed those of other conventional deep learning methods. The integration of Transformers and CNNs as dual encoders enables the extraction of rich feature information, significantly enhancing the effectiveness of 3D coronary artery segmentation. Additionally, this model provides a novel approach for segmenting other vascular structures.