Epigenetic modifications such as DNA methylation, histone post-translational modifications, non-coding RNA are reversible, heritable alterations which are induced by environmental stimuli. Major risk factors of diabetes and diabetic complications including hyperglycemia, oxidative stress and advanced glycation end products, can lead to abnormal epigenetic modifications in retinal vascular endothelial cells and retinal pigment epithelium cells. Epigenetic mechanisms are involved in the pathogenesis of macular edema and neovascularization of diabetic retinopathy (DR), as well as diabetic metabolic memory. The heritable nature of epigenetic marks also playsakey role in familial diabetes mellitus. Further elucidation of epigenetic mechanisms in DR can open the way for the discovery of novel therapeutic targets to prevent DR progression.
OBJECTIVE:To investigate the value of psychophysical testing for the macular function in the diegnosis of diabetic retinopathy(DR). METHODS:To compare the testing results of macular light sensitivity and pattern visual evoked potential(P-VEP)of 30 eyes of 15 normal person with those of 82 eyes of 41 diabetic patients(27 eyes without DR,55 eyes with simple type DR ). RESULTS:The macular light sensitivity of diabetic patients is much lower than that of normal Control group(plt;0.05). In the diabetic group, 62.19% is abnormal in macular light sensitivity, 69.51% in P-VEP. CONCLUSION: Testing of macular light sensitivit y is helpful in finding of diabetic retinopathy and early deterioration of macular visual function in diabetics. (Chin J Ocul Fundus Dis,1996,12: 223-224)
Objective To determine the affected factors of intraorbital hemodynamic results in diabetic retinopathy (DR) and the risk factors related to the occurrence of DR. Methods Posterior ciliary artery (PCA), central retinal artery (CRA), central retinal vein (CRV), and vortex vein (VV) of 68 patients with DR were measured by color Doppler flow image (CDFI). Thirty-one hemodynamic parameters, including systolic velocity, diastolic velocity, mean velocity, resistive index, pulsatility index and accelerative velocity of ophthalmic artery (OA), and other variates (blood pressure, blood sugar, gender, age, duration of the disease, and so on) were collected and clustered in a principal components analys is following a forward, stepwise logistic regression on these components. Results Nine principal components were extracted from 37 original variates, reflecting the velocity of OA, velocity of PCA, resistance of OA, velocity of CRA,resistance of CRA, resistance of PCA, time-related factor, venous drainage factor and gender factor, respectively. In the result of logistic regression, resistance of OA, velocity of CRA, resistance of PCA, time-related factor, and venous drainage factor were the risk factors related to DR. Conclusion The first risk factor affecting DR is time, and intraorbital hemodynamic abnormity influencing the development of diabetic retinopathy may be the increase of resistance of OA, decrease of velocity of CRA, decrease of resistance of PCA, and increase of venous drainage. (Chin J Ocul Fundus Dis,2004,20:98-100)
To evaluate the tberapeutlc effect of diode laser photocoagulation trearment on eases of diabetic retinopathy with certain degree of refractive media opacity. METHODS: Diode laser photocoagulation treatment were given to 36 selected cases (40 eyes )of diabetic retinopathy who can not be treated with argon laser because of refractive media opacity, Before and after treatment,visual acuity and fundus were examined and fundus fluorescein angiography and retinal color photographp were taken. The follow-up period was 8~14 months (with an average of 11 months) RESULT:Visual acuity were improved or maintained in 29 eyes(about 73%)of the 34 eyes of proliferative diabetic retinopathy ,retinal new vessels partly or entirely regressed in 25 eyes(about 74%). CONCLUTION ;Tbe effect of diode laser treatment on patients with diabetic retinopatby with certain degree of lens/vitreous opacity is relatively safisfactory. (Chin J Ocul Fundus Dis,1996,12:111- 113)
OBJECTIVE:To investigate relationship between plasma endotbelin(ET)and serum angiotensin converting enzyme (ACE)levels and diabetic retinopathy (DR). METHODS: Plasma ET and serum ACE levels were measured in 62 patients with diabetes mellitus(DM) and in 30 normal control subjects with radioimmunoassay and ultraviolet-spectrophotometry. RESULTS:Plasma ET and serum ACE levels in patients with DR were significantly higher than in patients without DR (P<0.01). Along with the progression of DR,plasma ET levels were significantly elevated and serum ACE levels were gradually elevated. CONCLUSIONS :These findings suggest that increased plasma ET and serum ACE levels may be related to the development and progression of DR. (Chin J Ocul Fundus Dis,1996,12: 177-179)
Objective To investigate the early influences of laser photocoagulation on retinal function in diabetic retinopathy(DR). Methods The multifocal electroretinograms (MERG) of 30 eyes with DR (phase Ⅲ~Ⅳ) were tested with visual evoked response image system IV b efore,and the 3rd day and the 7th day after laser photocoagulation. Results Three days after photocoagulation, the latency of N1 prolonged in the central macula 5deg; area and superionasal quadrant.Th e response densities of N1,P1 and N2 markedly reduced, and most significant changes occurred in the central macula 5deg; area and then in the central 10deg;area. There were also differences in the changes of the amplitude of N1 and P1 in diff erent quadrants .The changes of visual acuity were positively related to the de crease of amplitudes of N1,P1 and N2 in the macula. Conclusion The reduction of response densities in MERG reveals functional damage in diabetic retina occurring early after photocoagulation.The functional damage in macula induced indirectly by photocoagulation may explain the reduction of visual acuity after panretinal photocoagulation in some degree. (Chin J Ocul Fundus Dis, 2001,17:181-183)
Objective To observe the expression of p53, bcl-2 genes, vascular endothelial cell growth factor(VEGF), basic fibroblast growth factor(bFGF), insulin-like growth factor-I (IGF-I), and the receptors of these factors of retinal vascular endothelial cells (VECs) of 1- to 20-week diabetic rats, and the relationship between the expressions and cell cycle arrest.Methods Retinal sections of diabetic rats induced by alloxan were immunohistochemically stained and observed by light microscopy (LM) and electron microscopy (EM). Dot blotting and Western blotting were used to determine the expression of mRNA, proteins of p53 and bcl-2. Results Under LM, immunohistochemical positive expression of p53 and bcl-2 were found on the vessels of ganglion cell layer and inner nuclear layer of retinae of 8- to 20-week diabetic rats; under EM, these substances were observed depositing in VECs. The retinal VECs also expressed VEGF, bFGF, IGF-I and their receptors. There was no positive expression of other cell types in these retinae, all cell types of retinae in control group, or all cells of retinae of diabetic rats with the course of disease of 1 to 6 weeks. The result of dot blotting revealed that retinal tissue of 20-week diabetic rat expressed p53 and bcl-2 mRNA, and the result of Western blotting revealed that they also expressed p53 and bcl-2 proteins. But retinal tissues of control group did not. Positive expression of bax was not found in the retinae in control group or 1- to 20-week diabetic rats. Conclusion p53, bcl-2 may introduce cell cycle arrest of VECs of retinae in 8- to 20-week diabetic rats. High glucose might stimulate the expression of VEGF, bFGF, IGF-I and their receptors, and the growth factors may keep VECs surviving by self-secretion. (Chin J Ocul Fundus Dis,2003,19:29-33)
Objective To observe the visual field loss after 577 nm krypton pan-retinal photocoagulation (PRP) in the treatment of diabetic retinopathy (DR). Methods A prospective clinical studies. Forty-six eyes of 26 patients with proliferative DR (PDR) and severe non-proliferative DR (NPDR) diagnosed by clinical examination from No. 306 Hospital of PLA during January 2014 and December 2015 were included in this study. Among them, 21 eyes of NPDR and 20 eyes of PDR; 13 eyes with diabetic macular edema (DME) (DME group) and 28 eyes without DME (non-DME group). All eyes underwent best corrected visual acuity (BCVA), fundus color photography, fundus fluorescein angiography (FFA) and optical coherence tomography (SD-OCT) examinations. The visual field index (VFI) and visual field mean defect (MD) values were recorded by Humphrey-7401 automatic visual field examination (center 30° visual field). The BCVA of DR eyes was 0.81±0.28; the VFI and MD values were (89.8±8.4)% and −7.5±3.85 dB, respectively. The BCVA of the eyes in the without DME group and DME group were 0.92±0.20 and 0.57±0.27, the VFI were (90.86±7.86)% and (87.46±9.41)%, the MD values were −6.86±3.43 and 8.87±4.48 dB. PRP was performed on eyes using 577 nm krypton laser. The changes of VFI, MD and BCVA were observed at 1, 3, and 6 months after treatment. Results Compared with before treatment, the VFI of DR eyes decreased by 12.0%, 12.3% and 14.8% (t=7.423, 4.549, 4.79; P<0.001); the MD values were increased by −4.55, −4.75, 6.07 dB (t=−8.221, −5.313, −5.383; P<0.001) at 1, 3 and 6 months after treatment, the differences were statistically significant. There was no difference on VFI (t=1.090, −0.486; P>0.05) and MD value (t=−0.560, −0.337; P>0.05) at different time points after treatment. Compared with before treatment, the BCVA was significantly decreased in DR eyes at 1 month after treatment, the difference was statistically significant (t=2.871, P<0.05). Before and after treatment, the BCVA of the DME group was lower than that of the non-DME group, the difference were statistically significant (t=4.560, 2.848, 3.608, 5.694; P<0.001); but there was no differences on the VFI (t=1.209, 0.449, 0.922, 0.271; P>0.05) and MD values (t=1.582, 0.776, 0.927, 1.098; P>0.05) between the two groups. Conclusion The range of 30° visual field loss is about 12%-14.8% after 577 nm krypton laser PRP for DR. VFI and MD can quantitatively analyze the and extent of visual field loss after PRP treatment.
Uric acid (UA) is the final product of human purine metabolism. As one of the main antioxidants in the body, it can scavenge oxidative radicals. Under the action of oxidative-antioxidant shuttle mechanism, the antioxidant activity of UA can be reversed, causing inflammation and oxidative stress of vascular endothelial cells. Hyperuricemia (HUA) is considered to be one of the major risk factors for diabetes and diabetic nephropathy. The study of HUA in diabetic retinopathy (DR) is also a hot topic. UA can cause retinal vascular sclerosis, and affect the occurrence and development of DR by promoting oxidative stress and inducing neovascularization.
Intravitreal injection of anti-VEGF drugs has gradually become the first-line treatment for diabetic retinopathy (DR). However, diabetic macular edema (DME) caused by DR blood-retinal barrier damage is less sensitive to anti-VEGF drugs.Therefore, it is necessary to find supplementary drugs or alternative drugs that can effectively protect the structure of the blood vessel wall. Melatonin is a hormone mainly secreted by the pineal gland, which can play a number of functions in the human body such as regulating biological rhythms, scavenging free radicals, and anti-inflammatory. In recent years, studies have shown that melatonin can improve neuronal degeneration and protect blood vessel structure through multiple mechanisms in retinopathy. In terms of its protective effect on the retinal capillary structure, melatonin can improve the damage of early DR endothelial cells and pericytes through anti-oxidative stress, anti-inflammatory, and inhibiting cell apoptosis so as to protect the integrity of the blood-retinal barrier structure. It suggests that melatonin may provide new ideas for the prevention and treatment of DR, especially with DME.