west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Electrocardiogram" 17 results
  • ECG Changes in Workers Exposed to High-Temperature: A Meta-analysis

    Objective To conduct a systematic review on the Electrocardiogram (ECG) changes in the workers exposed to high temperatures by means of meta-analysis.Methods The retrospective cohort studies on the relationship between high temperature and ECG abnormalities published from 1990 to May 2009 were searched in CNKI, VIP, WanFang database and CBM database. The literatures meeting the inclusive criteria were selected, the quality was assessed, the data were extracted, and the meta-analyses were conducted with RevMan 4.2.2 software. Results A total of 20 studies were included. The results of meta-analyses showed: the ECG abnormality rate of the high-temperature group was obviously superior to that of the control group with significant difference (OR=2.76, 95%CI 2.37 to 3.20, Plt;0.000 01). The high-temperature severely affected left ventricular hypertrophy (OR=3.49, 95%CI 2.83 to 4.31, Plt;0.000 01), sinus bradycardia (OR=2.83, 95%CI 2.33 to 3.43, Plt;0.000 01), and changes in ST-T segment (OR=2.63, 95%CI 1.48 to 4.68, P=0.000 10), which indicated that the abnormal changes of ECG, such as left ventricular hypertrophy, sinus tachycardia, sinus bradycardia, and changes in ST-T segment could be the sensitive indexes to monitor cardiovascular disease of workers exposed to high-temperature. Conclusion The incidence of ECG abnormalities caused by high-temperature operation is obviously superior to that of the control group, so it is required to strengthen the health monitoring and labor protection for the workers exposed to high temperature.

    Release date:2016-09-07 11:02 Export PDF Favorites Scan
  • Early classification and recognition algorithm for sudden cardiac arrest based on limited electrocardiogram data trained with a two-stages convolutional neural network

    Sudden cardiac arrest (SCA) is a lethal cardiac arrhythmia that poses a serious threat to human life and health. However, clinical records of sudden cardiac death (SCD) electrocardiogram (ECG) data are extremely limited. This paper proposes an early prediction and classification algorithm for SCA based on deep transfer learning. With limited ECG data, it extracts heart rate variability features before the onset of SCA and utilizes a lightweight convolutional neural network model for pre-training and fine-tuning in two stages of deep transfer learning. This achieves early classification, recognition and prediction of high-risk ECG signals for SCA by neural network models. Based on 16 788 30-second heart rate feature segments from 20 SCA patients and 18 sinus rhythm patients in the international publicly available ECG database, the algorithm performance evaluation through ten-fold cross-validation shows that the average accuracy (Acc), sensitivity (Sen), and specificity (Spe) for predicting the onset of SCA in the 30 minutes prior to the event are 91.79%, 87.00%, and 96.63%, respectively. The average estimation accuracy for different patients reaches 96.58%. Compared to traditional machine learning algorithms reported in existing literatures, the method proposed in this paper helps address the requirement of large training datasets for deep learning models and enables early and accurate detection and identification of high-risk ECG signs before the onset of SCA.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • Automatic detection and visualization of myocardial infarction in electrocardiograms based on an interpretable deep learning model

    Automated detection of myocardial infarction (MI) is crucial for preventing sudden cardiac death and enabling early intervention in cardiovascular diseases. This paper proposes a deep learning framework based on a lightweight convolutional neural network (CNN) combined with one-dimensional gradient-weighted class activation mapping (1D Grad-CAM) for the automated detection of MI and the visualization of key waveform features in single-lead electrocardiograms (ECGs). The proposed method was evaluated using a total of 432 records from the Physikalisch-Technische Bundesanstalt Diagnostic ECG Database (PTBDB) and the Normal Sinus Rhythm Database (NSRDB), comprising 334 MI and 98 normal ECGs. Experimental results demonstrated that the model achieved an accuracy, sensitivity, and specificity of 95.75%, 96.03%, and 95.47%, respectively, in MI detection. Furthermore, the visualization results indicated that the model’s decision-making process aligned closely with clinically critical features, including pathological Q waves, ST-segment elevation, and T-wave inversion. This study confirms that the proposed deep learning algorithm combined with explainable technology performs effectively in the intelligent diagnosis of MI and the visualization of critical ECG waveforms, demonstrating its potential as a useful tool for early MI risk assessment and computer-aided diagnosis.

    Release date:2025-12-22 10:16 Export PDF Favorites Scan
  • Relationship between Bicuspid Aortic Valve and Ascending Aortic Dilatation Assessed by Computed Tomography Angiography

    ObjectiveTo find the relationship between bicuspid aortic valve (BAV) and the dilatation or aneurysm of the aorta using electrocardiogram-gated computed tomography angiography (CTA). MethodsWe collected the clinical data of the BAV coexisting with suspected aortic dilatation or aneurysm from February 2012 through April 2015. A total of 124 patients were analyzed retrospectively. There were 97 males and 27 females at an anverage age of 50.35±16.26 years. According to the CTA, patients were classified into two groups: a pure BAV(without raphe) group and a BAV (with raphe) group. we recorded the aortic diameters, gender, age, and so on. ResultsOf the 124 patients, 91 (73.4%) had BAV with raphe, and 33 patients (26.6%) had pure BAV. The analysis revealed that the diameter of the annulus (23.90±3.34 mm vs. 21.74±3.46 mm, P=0.005), the sinuses of Valsalva (40.93±6.78 mm vs. 37.35±7.06 mm, P=0.022), the tubular portion of the ascending aorta (45.38±7.66 mm vs. 38.29±8.18 mm, P=0.0001), and the part of the aorta proximal to the innominate artery (34.19±4.98 mm vs. 30.23±6.62 mm, P=0.02) between patients with BAV with raphe and pure BAV had significant differences. And there was a significant difference in prevalence of dilatation of the aorta between patients with pure BAV and BAV with raphe [77/91 (84.6%) vs.18/31(58.1%), P=0.004]. Of the 91 BAV with raphe patients, we found 76 patients (83.5%) with right and left coronary cusps (R-L) fusion, 13 patients (14.3%) with right and non-coronary cusps (R-N) fusion, and 2 patients (1.2%) with left and non-coronary cusps (L-N) fusion. There was a statistical difference in the aortic root diameters between R-L fusion BAV and R-N fusion BAV. The diameter of the distal ascending aorta and proximal aortic arch between R-L and R-N fusion BAV had statistical differences. ConclusionsBAV with raphe is more common than pure BAV and is more often associated with dilatation and aneurysm of the ascending aorta. Otherwise R-L fusion BAV is associated with increased diameters of the aortic root, while R-N fusion BAV is associated with increased diameters of the distal ascending aorta and proximal arch.

    Release date:2016-11-04 06:36 Export PDF Favorites Scan
  • Clinical Study of Dental Extraction with Electrocardiogram Monitoring

    ObjectiveTo discuss the safety of dental extraction with electrocardiogram (ECG) monitoring for cardiovascular patients. MethodsWe summarized and analyzed the clinical data of 933 cases of dental extraction with ECG monitoring from May 2010 to May 2011. Analysis of the change of heart rate and blood pressure in the process of dental extraction was also carried out. ResultsAll patients underwent the tooth extraction successfully. The heart rate and blood pressure increased after local anesthesia and in the process of tooth extraction without any accident. ConclusionUnder the premise of strict control of indications, dental extraction with the implementation of ECG monitoring has a very high security for patients with cardiovascular diseases or other systemic disorders.

    Release date: Export PDF Favorites Scan
  • Mental fatigue state recognition method based on convolution neural network and long short-term memory

    The pace of modern life is accelerating, the pressure of life is gradually increasing, and the long-term accumulation of mental fatigue poses a threat to health. By analyzing physiological signals and parameters, this paper proposes a method that can identify the state of mental fatigue, which helps to maintain a healthy life. The method proposed in this paper is a new recognition method of psychological fatigue state of electrocardiogram signals based on convolutional neural network and long short-term memory. Firstly, the convolution layer of one-dimensional convolutional neural network model is used to extract local features, the key information is extracted through pooling layer, and some redundant data is removed. Then, the extracted features are used as input to the long short-term memory model to further fuse the ECG features. Finally, by integrating the key information through the full connection layer, the accurate recognition of mental fatigue state is successfully realized. The results show that compared with traditional machine learning algorithms, the proposed method significantly improves the accuracy of mental fatigue recognition to 96.3%, which provides a reliable basis for the early warning and evaluation of mental fatigue.

    Release date:2024-04-24 09:40 Export PDF Favorites Scan
  • A review on intelligent auxiliary diagnosis methods based on electrocardiograms for myocardial infarction

    Myocardial infarction (MI) has the characteristics of high mortality rate, strong suddenness and invisibility. There are problems such as the delayed diagnosis, misdiagnosis and missed diagnosis in clinical practice. Electrocardiogram (ECG) examination is the simplest and fastest way to diagnose MI. The research on MI intelligent auxiliary diagnosis based on ECG is of great significance. On the basis of the pathophysiological mechanism of MI and characteristic changes in ECG, feature point extraction and morphology recognition of ECG, along with intelligent auxiliary diagnosis method of MI based on machine learning and deep learning are all summarized. The models, datasets, the number of ECG, the number of leads, input modes, evaluation methods and effects of different methods are compared. Finally, future research directions and development trends are pointed out, including data enhancement of MI, feature points and dynamic features extraction of ECG, the generalization and clinical interpretability of models, which are expected to provide references for researchers in related fields of MI intelligent auxiliary diagnosis.

    Release date:2023-10-20 04:48 Export PDF Favorites Scan
  • Research on arrhythmia classification algorithm based on adaptive multi-feature fusion network

    Deep learning method can be used to automatically analyze electrocardiogram (ECG) data and rapidly implement arrhythmia classification, which provides significant clinical value for the early screening of arrhythmias. How to select arrhythmia features effectively under limited abnormal sample supervision is an urgent issue to address. This paper proposed an arrhythmia classification algorithm based on an adaptive multi-feature fusion network. The algorithm extracted RR interval features from ECG signals, employed one-dimensional convolutional neural network (1D-CNN) to extract time-domain deep features, employed Mel frequency cepstral coefficients (MFCC) and two-dimensional convolutional neural network (2D-CNN) to extract frequency-domain deep features. The features were fused using adaptive weighting strategy for arrhythmia classification. The paper used the arrhythmia database jointly developed by the Massachusetts Institute of Technology and Beth Israel Hospital (MIT-BIH) and evaluated the algorithm under the inter-patient paradigm. Experimental results demonstrated that the proposed algorithm achieved an average precision of 75.2%, an average recall of 70.1% and an average F1-score of 71.3%, demonstrating high classification accuracy and being able to provide algorithmic support for arrhythmia classification in wearable devices.

    Release date:2025-02-21 03:20 Export PDF Favorites Scan
  • Developments of ex vivo cardiac electrical mapping and intelligent labeling of atrial fibrillation substrates

    Cardiac three-dimensional electrophysiological labeling technology is the prerequisite and foundation of atrial fibrillation (AF) ablation surgery, and invasive labeling is the current clinical method, but there are many shortcomings such as large trauma, long procedure duration, and low success rate. In recent years, because of its non-invasive and convenient characteristics, ex vivo labeling has become a new direction for the development of electrophysiological labeling technology. With the rapid development of computer hardware and software as well as the accumulation of clinical database, the application of deep learning technology in electrocardiogram (ECG) data is becoming more extensive and has made great progress, which provides new ideas for the research of ex vivo cardiac mapping and intelligent labeling of AF substrates. This paper reviewed the research progress in the fields of ECG forward problem, ECG inverse problem, and the application of deep learning in AF labeling, discussed the problems of ex vivo intelligent labeling of AF substrates and the possible approaches to solve them, prospected the challenges and future directions for ex vivo cardiac electrophysiology labeling.

    Release date:2024-04-24 09:40 Export PDF Favorites Scan
  • Electrocardiogram data recognition algorithm based on variable scale fusion network model

    The judgment of the type of arrhythmia is the key to the prevention and diagnosis of early cardiovascular disease. Therefore, electrocardiogram (ECG) analysis has been widely used as an important basis for doctors to diagnose. However, due to the large differences in ECG signal morphology among different patients and the unbalanced distribution of categories, the existing automatic detection algorithms for arrhythmias have certain difficulties in the identification process. This paper designs a variable scale fusion network model for automatic recognition of heart rhythm types. In this study, a variable-scale fusion network model was proposed for automatic identification of heart rhythm types. The improved ECG generation network (EGAN) module was used to solve the imbalance of ECG data, and the ECG signal was reproduced in two dimensions in the form of gray recurrence plot (GRP) and spectrogram. Combined with the branching structure of the model, the automatic classification of variable-length heart beats was realized. The results of the study were verified by the Massachusetts institute of technology and Beth Israel hospital (MIT-BIH) arrhythmia database, which distinguished eight heart rhythm types. The average accuracy rate reached 99.36%, and the sensitivity and specificity were 96.11% and 99.84%, respectively. In conclusion, it is expected that this method can be used for clinical auxiliary diagnosis and smart wearable devices in the future.

    Release date:2022-08-22 03:12 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content