west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "FU Yunfa" 14 results
  • Control of intelligent car based on electroencephalogram and neurofeedback

    To improve the performance of brain-controlled intelligent car based on motor imagery (MI), a method based on neurofeedback (NF) with electroencephalogram (EEG) for controlling intelligent car is proposed. A mental strategy of MI in which the energy column diagram of EEG features related to the mental activity is presented to subjects with visual feedback in real time to train them to quickly master the skills of MI and regulate their EEG activity, and combination of multi-features fusion of MI and multi-classifiers decision were used to control the intelligent car online. The average, maximum and minimum accuracy of identifying instructions achieved by the trained group (trained by the designed feedback system before the experiment) were 85.71%, 90.47% and 76.19%, respectively and the corresponding accuracy achieved by the control group (untrained) were 73.32%, 80.95% and 66.67%, respectively. For the trained group, the average, longest and shortest time consuming were 92 s, 101 s, and 85 s, respectively, while for the control group the corresponding time were 115.7 s, 120 s, and 110 s, respectively. According to the results described above, it is expected that this study may provide a new idea for the follow-up development of brain-controlled intelligent robot by the neurofeedback with EEG related to MI.

    Release date:2018-02-26 09:34 Export PDF Favorites Scan
  • Direct brain-controlled multi-robot cooperation task

    Brain control is a new control method. The traditional brain-controlled robot is mainly used to control a single robot to accomplish a specific task. However, the brain-controlled multi-robot cooperation (MRC) task is a new topic to be studied. This paper presents an experimental research which received the "Innovation Creative Award" in the brain-computer interface (BCI) brain-controlled robot contest at the World Robot Contest. Two effective brain switches were set: total control brain switch and transfer switch, and BCI based steady-state visual evoked potentials (SSVEP) was adopted to navigate a humanoid robot and a mechanical arm to complete the cooperation task. Control test of 10 subjects showed that the excellent SSVEP-BCI can be used to achieve the MRC task by appropriately setting up the brain switches. This study is expected to provide inspiration for the future practical brain-controlled MRC task system.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
  • Recognition of three different imagined movement of the right foot based on functional near-infrared spectroscopy

    Brain-computer interface (BCI) based on functional near-infrared spectroscopy (fNIRS) is a new-type human-computer interaction technique. To explore the separability of fNIRS signals in different motor imageries on the single limb, the study measured the fNIRS signals of 15 subjects (amateur football fans) during three different motor imageries of the right foot (passing, stopping and shooting). And the correlation coefficient of the HbO signal during different motor imageries was extracted as features for the input of a three-classification model based on support vector machines. The results found that the classification accuracy of the three motor imageries of the right foot was 78.89%±6.161%. The classification accuracy of the two-classification of motor imageries of the right foot, that is, passing and stopping, passing and shooting, and stopping and shooting was 85.17%±4.768%, 82.33%±6.011%, and 89.33%±6.713%, respectively. The results demonstrate that the fNIRS of different motor imageries of the single limb is separable, which is expected to add new control commands to fNIRS-BCI and also provide a new option for rehabilitation training and control peripherals for unilateral stroke patients. Besides, the study also confirms that the correlation coefficient can be used as an effective feature to classify different motor imageries.

    Release date:2020-06-28 07:05 Export PDF Favorites Scan
  • Design and experiment of a multi-modal electroencephalogram-near infrared spectroscopy helmet for simultaneously acquiring at the same brain area

    Multi-modal brain-computer interface and multi-modal brain function imaging are developing trends for the present and future. Aiming at multi-modal brain-computer interface based on electroencephalogram-near infrared spectroscopy (EEG-NIRS) and in order to simultaneously acquire the brain activity of motor area, an acquisition helmet by NIRS combined with EEG was designed and verified by the experiment. According to the 10-20 system or 10-20 extended system, the diameter and spacing of NIRS probe and EEG electrode, NIRS probes were aligned with C3 and C4 as the reference electrodes, and NIRS probes were placed in the middle position between EEG electrodes to simultaneously measure variations of NIRS and the corresponding variation of EEG in the same functional brain area. The clamp holder and near infrared probe were coupled by tightening a screw. To verify the feasibility and effectiveness of the multi-modal EEG-NIRS helmet, NIRS and EEG signals were collected from six healthy subjects during six mental tasks involving the right hand clenching force and speed motor imagery. These signals may reflect brain activity related to hand clenching force and speed motor imagery in a certain extent. The experiment showed that the EEG-NIRS helmet designed in the paper was feasible and effective. It not only could provide support for the multi-modal motor imagery brain-computer interface based on EEG-NIRS, but also was expected to provide support for multi-modal brain functional imaging based on EEG-NIRS.

    Release date:2018-04-16 09:57 Export PDF Favorites Scan
  • Key technologies for intelligent brain-computer interaction based on magnetoencephalography

    Brain-computer interaction (BCI) is a transformative human-computer interaction, which aims to bypass the peripheral nerve and muscle system and directly convert the perception, imagery or thinking activities of cranial nerves into actions for further improving the quality of human life. Magnetoencephalogram (MEG) measures the magnetic field generated by the electrical activity of neurons. It has the unique advantages of non-contact measurement, high temporal and spatial resolution, and convenient preparation. It is a new BCI driving signal. MEG-BCI research has important brain science significance and potential application value. So far, few documents have elaborated the key technical issues involved in MEG-BCI. Therefore, this paper focuses on the key technologies of MEG-BCI, and details the signal acquisition technology involved in the practical MEG-BCI system, the design of the MEG-BCI experimental paradigm, the MEG signal analysis and decoding key technology, MEG-BCI neurofeedback technology and its intelligent method. Finally, this paper also discusses the existing problems and future development trends of MEG-BCI. It is hoped that this paper will provide more useful ideas for MEG-BCI innovation research.

    Release date: Export PDF Favorites Scan
  • Applications, industrial transformation and commercial value of brain-computer interface technology

    Brain-computer interface (BCI) is a revolutionary human-computer interaction technology, which includes both BCI that can output instructions directly from the brain to external devices or machines without relying on the peripheral nerve and muscle system, and BCI that bypasses the peripheral nerve and muscle system and inputs electrical, magnetic, acoustic and optical stimuli or neural feedback directly to the brain from external devices or machines. With the development of BCI technology, it has potential application not only in medical field, but also in non-medical fields, such as education, military, finance, entertainment, smart home and so on. At present, there is little literature on the relevant application of BCI technology, the current situation of BCI industrialization at home and abroad and its commercial value. Therefore, this paper expounds and discusses the above contents, which are expected to provide valuable information for the public and organizations, BCI researchers, BCI industry translators and salespeople, and improve the cognitive level of BCI technology, further promote the application and industrial transformation of BCI technology and enhance the commercial value of BCI, so as to serve mankind better.

    Release date: Export PDF Favorites Scan
  • Neurofeedback technology based on functional near infrared spectroscopy imaging and its applications

    Neurofeedback (NF) technology based on electroencephalogram (EEG) data or functional magnetic resonance imaging (fMRI) has been widely studied and applied. In contrast, functional near infrared spectroscopy (fNIRS) has become a new technique in NF research in recent years. fNIRS is a neuroimaging technology based on hemodynamics, which has the advantages of low cost, good portability and high spatial resolution, and is more suitable for use in natural environments. At present, there is a lack of comprehensive review on fNIRS-NF technology (fNIRS-NF) in China. In order to provide a reference for the research of fNIRS-NF technology, this paper first describes the principle, key technologies and applications of fNIRS-NF, and focuses on the application of fNIRS-NF. Finally, the future development trend of fNIRS-NF is prospected and summarized. In conclusion, this paper summarizes fNIRS-NF technology and its application, and concludes that fNIRS-NF technology has potential practicability in neurological diseases and related fields. fNIRS can be used as a good method for NF training. This paper is expected to provide reference information for the development of fNIRS-NF technology.

    Release date: Export PDF Favorites Scan
  • Ethics considerations on brain-computer interface technology

    The development and potential application of brain-computer interface (BCI) technology is closely related to the human brain, so that the ethical regulation of BCI has become an important issue attracting the consideration of society. Existing literatures have discussed the ethical norms of BCI technology from the perspectives of non-BCI developers and scientific ethics, while few discussions have been launched from the perspective of BCI developers. Therefore, there is a great need to study and discuss the ethical norms of BCI technology from the perspective of BCI developers. In this paper, we present the user-centered and non-harmful BCI technology ethics, and then discuss and look forward on them. This paper argues that human beings can cope with the ethical issues arising from BCI technology, and as BCI technology develops, its ethical norms will be improved continuously. It is expected that this paper can provide thoughts and references for the formulation of ethical norms related to BCI technology.

    Release date: Export PDF Favorites Scan
  • Ethical considerations for medical applications of implantable brain-computer interfaces

    Implantable brain-computer interfaces (BCIs) have potentially important clinical applications due to the high spatial resolution and signal-to-noise ratio of electrodes that are closer to or implanted in the cerebral cortex. However, the surgery and electrodes of implantable BCIs carry safety risks of brain tissue damage, and their medical applications face ethical challenges, with little literature to date systematically considering ethical norms for the medical applications of implantable BCIs. In order to promote the clinical translation of this type of BCI, we considered the ethics of practice for the medical application of implantable BCIs, including: reducing the risk of brain tissue damage from implantable BCI surgery and electrodes, providing patients with customized and personalized implantable BCI treatments, ensuring multidisciplinary collaboration in the clinical application of implantable BCIs, and the responsible use of implantable BCIs, among others. It is expected that this article will provide thoughts and references for the research and development of ethics of the medical application of implantable BCI.

    Release date: Export PDF Favorites Scan
  • An emerging discipline: brain-computer interfaces medicine

    With the development of brain-computer interface (BCI) technology and its translational application in clinical medicine, BCI medicine has emerged, ushering in profound changes to the practice of medicine, while also bringing forth a series of ethical issues related to BCI medicine. BCI medicine is progressively emerging as a new disciplinary focus, yet to date, there has been limited literature discussing it. Therefore, this paper focuses on BCI medicine, firstly providing an overview of the main potential medical applications of BCI technology. It then defines the discipline, outlines its objectives, methodologies, potential efficacy, and associated translational medical research. Additionally, it discusses the ethics associated with BCI medicine, and introduces the standardized operational procedures for BCI medical applications and the methods for evaluating the efficacy of BCI medical applications. Finally, it anticipates the challenges and future directions of BCI medicine. In the future, BCI medicine may become a new academic discipline or major in higher education. In summary, this article is hoped to provide thoughts and references for the development of the discipline of BCI medicine.

    Release date: Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content