Sleep apnea causes cardiac arrest, sleep rhythm disorders, nocturnal hypoxia and abnormal blood pressure fluctuations in patients, which eventually lead to nocturnal target organ damage in hypertensive patients. The incidence of obstructive sleep apnea hypopnea syndrome (OSAHS) is extremely high, which seriously affects the physical and mental health of patients. This study attempts to extract features associated with OSAHS from 24-hour ambulatory blood pressure data and identify OSAHS by machine learning models for the differential diagnosis of this disease. The study data were obtained from ambulatory blood pressure examination data of 339 patients collected in outpatient clinics of the Chinese PLA General Hospital from December 2018 to December 2019, including 115 patients with OSAHS diagnosed by polysomnography (PSG) and 224 patients with non-OSAHS. Based on the characteristics of clinical changes of blood pressure in OSAHS patients, feature extraction rules were defined and algorithms were developed to extract features, while logistic regression and lightGBM models were then used to classify and predict the disease. The results showed that the identification accuracy of the lightGBM model trained in this study was 80.0%, precision was 82.9%, recall was 72.5%, and the area under the working characteristic curve (AUC) of the subjects was 0.906. The defined ambulatory blood pressure features could be effectively used for identifying OSAHS. This study provides a new idea and method for OSAHS screening.
Brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) have become one of the major paradigms in BCI research due to their high signal-to-noise ratio and short training time required by users. Fast and accurate decoding of SSVEP features is a crucial step in SSVEP-BCI research. However, the current researches lack a systematic overview of SSVEP decoding algorithms and analyses of the connections and differences between them, so it is difficult for researchers to choose the optimum algorithm under different situations. To address this problem, this paper focuses on the progress of SSVEP decoding algorithms in recent years and divides them into two categories—trained and non-trained—based on whether training data are needed. This paper also explains the fundamental theories and application scopes of decoding algorithms such as canonical correlation analysis (CCA), task-related component analysis (TRCA) and the extended algorithms, concludes the commonly used strategies for processing decoding algorithms, and discusses the challenges and opportunities in this field in the end.
Although deep learning plays an important role in cell nucleus segmentation, it still faces problems such as difficulty in extracting subtle features and blurring of nucleus edges in pathological diagnosis. Aiming at the above problems, a nuclear segmentation network combined with attention mechanism is proposed. The network uses UNet network as the basic structure and the depth separable residual (DSRC) module as the feature encoding to avoid losing the boundary information of the cell nucleus. The feature decoding uses the coordinate attention (CA) to enhance the long-range distance in the feature space and highlights the key information of the nuclear position. Finally, the semantics information fusion (SIF) module integrates the feature of deep and shallow layers to improve the segmentation effect. The experiments were performed on the 2018 data science bowl (DSB2018) dataset and the triple negative breast cancer (TNBC) dataset. For the two datasets, the accuracy of the proposed method was 92.01% and 89.80%, the sensitivity was 90.09% and 91.10%, and the mean intersection over union was 89.01% and 89.12%, respectively. The experimental results show that the proposed method can effectively segment the subtle regions of the nucleus, improve the segmentation accuracy, and provide a reliable basis for clinical diagnosis.
Attention level evaluation refers to the evaluation of people's attention level through observation or experimental testing, and its research results have great application value in education and teaching, intelligent driving, medical health and other fields. With its objective reliability and security, electroencephalogram signals have become one of the most important technical means to analyze and express attention level. At present, there is little review literature that comprehensively summarize the application of electroencephalogram signals in the field of attention evaluation. To this end, this paper first summarizes the research progress on attention evaluation; then the important methods for electroencephalogram attention evaluation are analyzed, including data preprocessing, feature extraction and selection, attention evaluation methods, etc.; finally, the shortcomings of the current development in the field of electroencephalogram attention evaluation are discussed, and the future development trend is prospected, to provide research references for researchers in related fields.
Myocardial infarction (MI) has the characteristics of high mortality rate, strong suddenness and invisibility. There are problems such as the delayed diagnosis, misdiagnosis and missed diagnosis in clinical practice. Electrocardiogram (ECG) examination is the simplest and fastest way to diagnose MI. The research on MI intelligent auxiliary diagnosis based on ECG is of great significance. On the basis of the pathophysiological mechanism of MI and characteristic changes in ECG, feature point extraction and morphology recognition of ECG, along with intelligent auxiliary diagnosis method of MI based on machine learning and deep learning are all summarized. The models, datasets, the number of ECG, the number of leads, input modes, evaluation methods and effects of different methods are compared. Finally, future research directions and development trends are pointed out, including data enhancement of MI, feature points and dynamic features extraction of ECG, the generalization and clinical interpretability of models, which are expected to provide references for researchers in related fields of MI intelligent auxiliary diagnosis.
Recent studies have introduced attention models for medical visual question answering (MVQA). In medical research, not only is the modeling of “visual attention” crucial, but the modeling of “question attention” is equally significant. To facilitate bidirectional reasoning in the attention processes involving medical images and questions, a new MVQA architecture, named MCAN, has been proposed. This architecture incorporated a cross-modal co-attention network, FCAF, which identifies key words in questions and principal parts in images. Through a meta-learning channel attention module (MLCA), weights were adaptively assigned to each word and region, reflecting the model’s focus on specific words and regions during reasoning. Additionally, this study specially designed and developed a medical domain-specific word embedding model, Med-GloVe, to further enhance the model’s accuracy and practical value. Experimental results indicated that MCAN proposed in this study improved the accuracy by 7.7% on free-form questions in the Path-VQA dataset, and by 4.4% on closed-form questions in the VQA-RAD dataset, which effectively improves the accuracy of the medical vision question answer.
Aiming at the problem that the feature extraction ability of forehead single-channel electroencephalography (EEG) signals is insufficient, which leads to decreased fatigue detection accuracy, a fatigue feature extraction and classification algorithm based on supervised contrastive learning is proposed. Firstly, the raw signals are filtered by empirical modal decomposition to improve the signal-to-noise ratio. Secondly, considering the limitation of the one-dimensional signal in information expression, overlapping sampling is used to transform the signal into a two-dimensional structure, and simultaneously express the short-term and long-term changes of the signal. The feature extraction network is constructed by depthwise separable convolution to accelerate model operation. Finally, the model is globally optimized by combining the supervised contrastive loss and the mean square error loss. Experiments show that the average accuracy of the algorithm for classifying three fatigue states can reach 75.80%, which is greatly improved compared with other advanced algorithms, and the accuracy and feasibility of fatigue detection by single-channel EEG signals are significantly improved. The results provide strong support for the application of single-channel EEG signals, and also provide a new idea for fatigue detection research.
Epileptic seizures and the interictal epileptiform discharges both have similar waveforms. And a method to effectively extract features that can be used to distinguish seizures is of crucial importance both in theory and clinical practice. We constructed state transfer networks by using visibility graphlet at multiple sampling intervals and analyzed network features. We found that the characteristics waveforms in ictal periods were more robust with various sampling intervals, and those feature network structures did not change easily in the range of the smaller sampling intervals. Inversely, the feature network structures of interictal epileptiform discharges were stable in range of relatively larger sampling intervals. Furthermore, the feature nodes in networks during ictal periods showed long-term correlation along the process, and played an important role in regulating system behavior. For stereo-electroencephalography at around 500 Hz, the greatest difference between ictal and the interictal epileptiform occurred at the sampling interval around 0.032 s. In conclusion, this study effectively reveals the correlation between the features of pathological changes in brain system and the multiple sampling intervals, which holds potential application value in clinical diagnosis for identifying, classifying, and predicting epilepsy.