west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Finite element analysis" 12 results
  • FINITE ELEMENT STUDY ON ANTERIOR TRANSPEDICULAR SCREW-ARTIFICIAL VERTEBRAL BODY FIXATION IN LOWER CERVICAL SPINE

    Objective To compare the biomechanical properties of the anterior transpedicular screw-artificial vertebral body (AVB) and conventional anterior screw plate system (AP) in lower cervical spine by finite element study. Methods CT images (C1-T1) were obtained from a 38-year-old female volunteer. The models of intact C3-7 (intact group), AP fixation (AP group), and AVB fixation (AVB group) were established and analyzed by Mimics 14.0, Geomagic Studio 2013, and ANSYS 14.0 softwares. The axial force of 74 N and moment couple of 1 N·m were loaded on the upper surface and upper facet joint surfaces of C3. Under conditions of flexion, extension, lateral bending, and rotation, the Von Mises stress distribution regularity and maximum equivalent stree of AP and AVB groups were recorded, and the range of motion (ROM) was also analyzed of 3 groups. Results The intact model of lower cervical spine (C3-7) was established, consisting of 286 382 elements and 414 522 nodes, and it was successfully validated with the previously reported cadaveric experimental data of Panjabi and Kallemeyn. The stress concentrated on the connection between plate and screw in AP group, while it distributed evenly in AVB group. Between AP and AVB groups, there was significant difference in maximum equivalent stress values under conditions of 74 N axial force, flexion, extension, and rotation. AVB group had smaller ROM of fixed segments and larger ROM of adjacent segments than AP group. Compared with intact group, whole ROM of the lower cervical spine decreased about 3°, but ROM of C3, 4 and C6, 7 segments increased nearly 5° in both AP and AVB groups. Conclusion As a new reconstruction method of lower cervical spine, AVB fixation provides better stability and lower risk of failure than AP fixation.

    Release date:2016-08-31 10:53 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF THREE-DIMENSIONAL DIGITAL MODEL FOR REPAIR AND RECONSTRUCTION OF KNEE JOINT

    Objective To review recent advance in the application and research of three-dimensional digital knee model. Methods The recent original articles about three-dimensional digital knee model were extensively reviewed and analyzed. Results The digital three-dimensional knee model can simulate the knee complex anatomical structure very well. Based on this, there are some developments of new software and techniques, and good clinical results are achieved. Conclusion With the development of computer techniques and software, the knee repair and reconstruction procedure has been improved, the operation will be more simple and its accuracy will be further improved.

    Release date:2016-08-31 04:05 Export PDF Favorites Scan
  • STUDY ON BIOMECHANICAL MODEL OF RABBIT FEMUR

    Objective To discuss the method of constructingbiomechanical model of rabbit femur.Methods The sample of rabbit femur was prepared as follows:firstly,femur section images were obtained,then the image wasput into the computer and processed to get the boundary contour line; secondly, through programming the contour line coordinate for modeling was obtained, then the data were put into the model software to find the threedimensional entity model. Results Whole three-dimensional model of rabbit femur was constructed. It simulated actually dissection form of femur. Conclusion The establishment of the model lays a foundation for ascertaining optimal parameter of vibration improving bone minerydensity by finite element analysis.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • THE FINITE ELEMENT ANALYSIS OF LUMBAR FUSIONS

    Objective To investigate the stability and the stress distributions of L3-5 fused with three different approaches (interbody, posterolateral and circumferential fusions) and to investigate degeneration of thesegment adjacent to the fused functional spinal unit. Methods A detailed L3-5 three-dimensional nonlinear finite element model of a normal man aged 32 was established and validated. Based on the model, the destabilized model, the interbody, posterolateral and circumferential fusions models of L4-5 were established. After the loadings were placed on all the models, we recorded the angular motions of the fused segment and the Von Mises stress of the adjacent intervertebral disc. Results The circumferential fusion was most stable than the others, and the interbody fusion was more stable than the posterolateral fusion. The maximal Von Mises stress of the adjacent L3,4 intervertebral disc in all the models was ranked descendingly as flexion,lateral bending,torsion and extension. For the three kinds of fusions, the stress increment of the L3,4 intervertebral disc was ranked ascendingly as interbody fusion,posterolateral fusion and circumferential fusion. Conclusion After destabilization of the L4,5 segment, the stability of the circumferential fusionis better than that of the others, particularly under the flexional or extensional loading. The stability of the interbody fusion is better than that of the posterolateral fusion, except for under the flexional loading. The feasibility of adjacent segment degeneration can be ranked descendingly as: circumferential fusion,posterolateral fusion and interbody fusion.

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • 3-D FINITE ELEMENT AND CLINICAL ANALYSES OF THE RECONSTRUCTION OF THE FIRST TO THIRD METATARSUS DEFECT WITH ILIUM

    Objective To investigate the effect of first to third metatarsus defect and the effect of reconstruction with ilium on foot function. Methods The first to third metatarsus defect was simulated in a 3D foot model and rebuilt by ilium. The maximal displacement and stress calculated by the method of finite elements were used as the index of estimation. Five cases treated from Mar. 1996 to Jan. 2003 with metatarsus defect rebuilding by free vascular iliac bone incorporating free flapwere evaluated. Results Foot function was affected largely by the defect of the first to third metatarsus. Compared with the normal foot, the maximal displacement was increased by 2.15 times and the maximal stress was increased by 2.12 times in 100% defected foot, and in 50%-defected foot maximal displacement and stress were increased by 1.65 times and 2.05 times respectively. Follow-up had been conducted for 1 to 2 years. All bones and flaps of the 5 cases survived (2 excellent, 2 good, and 1 passable) by function evaluation. Conclusion The first to third metatarsus defect should be repaired, and the method of transplanting iliac bone added by flap is effective. 

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • APPLICATION OF THREE-DIMENSIONAL DIGITAL TECHNOLOGY IN KNEE ARTHROPLASTY

    ObjectiveTo review the recent progress in the application of three-dimensional digital technology in knee arthroplasty. MethodsThe relevant literature at home and abroad about the three-dimensional digital technology in the applications of knee arthroplasty in recent years was extensively reviewed. ResultsThe three-dimensional digital technology can obtain arthroplasty knee morphology and biomechanics, and can estimate preoperative planning osteotomy and the sizes of prostheses, so it can guide knee arthroplasty precisely. ConclusionThree-dimensional digital technology can reduce the operation error, improve the operation precision, and improve the effectiveness in knee arthroplasty.

    Release date:2016-10-21 06:36 Export PDF Favorites Scan
  • Evaluation of brain injury caused by stick type blunt instruments based on convolutional neural network and finite element method

    The finite element method is a new method to study the mechanism of brain injury caused by blunt instruments. But it is not easy to be applied because of its technology barrier of time-consuming and strong professionalism. In this study, a rapid and quantitative evaluation method was investigated to analyze the craniocerebral injury induced by blunt sticks based on convolutional neural network and finite element method. The velocity curve of stick struck and the maximum principal strain of brain tissue (cerebrum, corpus callosum, cerebellum and brainstem) from the finite element simulation were used as the input and output parameters of the convolutional neural network The convolutional neural network was trained and optimized by using the 10-fold cross-validation method. The Mean Absolute Error (MAE), Mean Square Error (MSE), and Goodness of Fit (R2) of the finally selected convolutional neural network model for the prediction of the maximum principal strain of the cerebrum were 0.084, 0.014, and 0.92, respectively. The predicted results of the maximum principal strain of the corpus callosum were 0.062, 0.007, 0.90, respectively. The predicted results of the maximum principal strain of the cerebellum and brainstem were 0.075, 0.011, and 0.94, respectively. These results show that the research and development of the deep convolutional neural network can quickly and accurately assess the local brain injury caused by the sticks blow, and have important application value for understanding the quantitative evaluation and the brain injury caused by the sticks struck. At the same time, this technology improves the computational efficiency and can provide a basis reference for transforming the current acceleration-based brain injury research into a focus on local brain injury research.

    Release date: Export PDF Favorites Scan
  • Biomechanical analysis of Magic screw fixation for acetabular posterior column fracture

    This study aims to analyze the biomechanical stability of Magic screw in the treatment of acetabular posterior column fractures by finite element analysis. A three-dimensional finite element model of the pelvis was established based on the computed tomography (CT) and magnetic resonance imaging (MRI) data of a volunteer and its effectiveness was verified. Then, the posterior column fracture model of the acetabulum was generated. The biomechanical stability of the four internal fixation models was compared. The 500 N force was applied to the upper surface of the sacrum to simulate human gravity. The maximum implant stresses of retrograde screw fixation, single-plate fixation, double-plate fixation and Magic screw fixation model in standing and sitting position were as follows: 114.10, 113.40 MPa; 58.93, 55.72 MPa; 58.76, 47.47 MPa; and 24.36, 27.50 MPa, respectively. The maximum stresses at the fracture end were as follows: 72.71, 70.51 MPa; 48.18, 22.80 MPa; 52.38, 27.14 MPa; and 34.05, 30.78 MPa, respectively. The fracture end displacement of the retrograde tension screw fixation model was the largest in both states, and the Magic screw had the smallest displacement variation in the standing state, but it was significantly higher than the two plate fixations in the sitting state. Magic screw can satisfy the biomechanical stability of posterior column fracture. Compared with traditional fixations, Magic screw has the advantages of more uniform stress distribution and less stress, and should be recommended.

    Release date: Export PDF Favorites Scan
  • Finite element analysis of the effect of knee movable unicompartmental prosthesis insertion shape and mounting position on stress distribution in the knee joint after replacement

    In unicompartmental replacement surgery, there are a wide variety of commercially available unicompartmental prostheses, and the consistency of the contact surface between the common liner and the femoral prosthesis could impact the stress distribution in the knee after replacement in different ways. Medial tibial plateau fracture and liner dislocation are two common forms of failure after unicompartmental replacement. One of the reasons is the mismatch in the mounting position of the unicompartmental prosthesis in the knee joint, which may lead to failure. Therefore, this paper focuses on the influence of the shape of the contact surface between the liner and the femoral prosthesis and the mounting position of the unicompartmental prosthesis on the stress distribution in the knee joint after replacement. Firstly, a finite element model of the normal human knee joint was established, and the validity of the model was verified by both stress and displacement. Secondly, two different shapes of padded knee prosthesis models (type A and type B) were developed to simulate and analyze the stress distribution in the knee joint under single-leg stance with five internal or external rotation mounting positions of the two pads. The results showed that under a 1 kN axial load, the peak contact pressure of the liner, the peak ACL equivalent force, and the peak contact pressure of the lateral meniscus were smaller for type A than for type B. The liner displacement, peak contact pressure of the liner, peak tibial equivalent force, and peak ACL equivalent force were the smallest for type A at 3° of internal rotation in all five internal or external rotation mounting positions. For unicompartmental replacement, it is recommended that the choice of type A or type B liner for prosthetic internal rotation up to 6° should be combined with other factors of the patient for comprehensive analysis. In conclusion, the results of this paper may reduce the risk of liner dislocation and medial tibial plateau fracture after unicompartmental replacement, providing a biomechanical reference for unicompartmental prosthesis design.

    Release date: Export PDF Favorites Scan
  • Research on simulation and optimal design of a miniature magnetorheological fluid damper used in wearable rehabilitation training system

    The goal of this paper is to solve the problems of large volume, slow dynamic response and poor intelligent controllability of traditional gait rehabilitation training equipment by using the characteristic that the shear yield strength of magnetorheological fluid changes with the applied magnetic field strength. Based on the extended Bingham model, the main structural parameters of the magnetorheological fluid damper and its output force were simulated and optimized by using scientific computing software, and the three-dimensional modeling of the damper was carried out after the size was determined. On this basis and according to the design and use requirements of the damper, the finite element analysis software was used for force analysis, strength check and topology optimization of the main force components. Finally, a micro magnetorheological fluid damper suitable for wearable rehabilitation training system was designed, which has reference value for the design of lightweight, portable and intelligent rehabilitation training equipment.

    Release date: Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content