Due to the high dimensionality and complexity of the data, the analysis of spatial transcriptome data has been a challenging problem. Meanwhile, cluster analysis is the core issue of the analysis of spatial transcriptome data. In this article, a deep learning approach is proposed based on graph attention networks for clustering analysis of spatial transcriptome data. Our method first enhances the spatial transcriptome data, then uses graph attention networks to extract features from nodes, and finally uses the Leiden algorithm for clustering analysis. Compared with the traditional non-spatial and spatial clustering methods, our method has better performance in data analysis through the clustering evaluation index. The experimental results show that the proposed method can effectively cluster spatial transcriptome data and identify different spatial domains, which provides a new tool for studying spatial transcriptome data.
The existing epilepsy seizure detection algorithms have problems such as overfitting and poor generalization ability due to high reliance on manual labeling of electroencephalogram’s data and data imbalance between seizure and interictal periods. An unsupervised learning detection method for epileptic seizure that jointed graph attention network (GAT) and Transformer framework (GAT-T) was proposed. In this method, channel correlations were adaptively learned by GAT encoder. Temporal information was captured by one-dimensional convolution decoder. Combining outputs of the two mentioned above, predicted values for electroencephalogram were generated. The collective anomaly score was calculated and the detection threshold was determined. The results demonstrated that GAT-T achieved the average performance exceeding 90% (or 99%) with a 0.25 s (or 2 s) time segment length, which could effectively detect epileptic seizures. Moreover, the channel association probability matrix was expected to assist clinicians in the initial screening of the epileptogenic zone, and ablation experiments also reflected the significance of each module in GAT-T. This study may assist clinicians in making more accurate diagnostic and therapeutic decisions for epilepsy patients.