west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Heterogeneity" 15 results
  • RESEARCH ADVANCEMENT OF BONE MARROW DERIVED STEM CELL HETEROGENEITY AND ITS ROLE ININTESTINAL EPITHELIAL REPAIR

    Objective To summarize and review the heterogeneity of bone marrow derived stem cells (BMDSCs) and its formation mechanism and significance, and to analyze the possible roles and mechanisms in intestinal epithel ial reconstruction. Methods The related l iterature about BMDSCs heterogeneity and its role in intestinal epithel ial repair was reviewed and analyzed. Results The heterogeneity of BMDSCs provided better explanations for its multi-potency. The probable mechanisms of BMDSCs to repair intestinal epithel ium included direct implantation into intestinal epithel ium, fusion between BMDSCs and intestinal stem cells, and promotion of injury microcirculation reconstruction. Conclusion BMDSCs have a bright future in gastrointestinal injury caused by inflammatory bowl disease and regeneration.

    Release date:2016-09-01 09:17 Export PDF Favorites Scan
  • Breast Cancer Stem Cells and Genotyping

    Objective To summarize the advancement of breast cancer stem cells and genotyping and analyze the correlation between the two. Methods Relevant literatures about breast cancer stem cells and genotyping, which were published recently were collected and reviewed. Results Cancer stem cell origin theory was supported by researches of correlation between breast cancer stem cells and genotyping, which also explained the complexity of intrinsic subtypes and heterogeneity of breast cancer. Conclusions A new way can be detected to study the formation mechanism and biological characteristics of breast cancer at the cellular and molecular level by researches of correlation between breast cancer stem cells and genotyping, which are expected to provide new strategies and tools for diagnosis and treatment of breast cancer.

    Release date:2016-09-08 04:26 Export PDF Favorites Scan
  • Comparison study of estimators of between-trial variance in trial sequential analysis for random-effects model

    The assumption of fixed-effects model is based on that the true effect of the each trial is same. However, the assumption of random-effects model is based on that the true effect of included trials is normal distributed. The total variance is equal to the sum of within-trial variance and between-trial variance under the random-effects model. There are many estimators of the between-trial variance. The aim of this paper is to give a brief introduction of the estimators of between-trial variance in trial sequential analysis for random-effects model.

    Release date:2017-04-01 08:56 Export PDF Favorites Scan
  • The Distributional Heterogeneity of The Molecular Pathology Characteristics in Breast Cancer

    Objective To summarize the research progress of distributional heterogeneity of the molecular pathology characteristics in breast cancer. Methods The related literatures about the distribution of the molecular pathology characteristics in breast cancer were reviewed. Results The breast cancer had the same heterogeneity as other cancers. At the same time, the molecular pathology characteristics, such as estrogen receptor (ER), progesterone receptor (PR), Ki-67, and human epidermal growth factor receptor-2 (HER-2), had the distributional heterogeneity. The distributional heterogeneity of molecular pathology characteristics in breast cancer could effect the pathologic diagnosis, the treatment, and the prognosis. Conclusion Although there are some new techniques which were used to investigate the heterogeneity of breast cancer, but each way has some problems. The more attention should be paid to the research about the distributional heterogeneity of the molecular pathology characteristics in breast cancer.

    Release date: Export PDF Favorites Scan
  • Single-cell RNA sequencing-based research progress analysis of microglia in diabetic retinopathy

    Diabetic retinopathy (DR) is one of the main causes of vision loss and irreversible blindness in the working-age population, closely regarded as the destruction of the retinal neurovascular unit (NVU). As an important component of the NVU, retinal microglia (RMG) plays a vital role in the progression of DR. In recent years, single-cell RNA sequencing (scRNA-seq) technology has emerged as an important tool in transcriptomic analysis. This latest method reveals the heterogeneity and complexity of RNA transcriptional profiles within individual cells, as well as the composition of different cell types and functions. Utilizing scRNA-seq technology, researchers have further revealed the role of RMG in the occurrence and development of DR, discovering phenotypic heterogeneity, regional heterogeneity, and cell-to-cell communication in RMG. It is anticipated that in the future, more omics technologies and multi-omics correlation analysis methods will be applied to DR and even other ophthalmic diseases, exploring potential diagnostic and therapeutic targets, providing different perspectives for the clinical diagnosis, treatment, and scientific research of DR, and truly promoting clinical translation through technological innovation, thereby benefiting patients with DR diseases.

    Release date:2024-03-06 03:23 Export PDF Favorites Scan
  • Interval Estimation for the Amount of Heterogeneity in Meta-Analysis Based on Q-Statistic Following Linear Transformation of Chi-Square Distribution

    Objective To investigate confidence interval estimation for the amount of heterogeneity in meta-analysis. Methods On the basis of BT’s method, the approximate Q-statistic distribution following linear transformation of Chi-square was applied to improve the accuracy of Q-statistic distribution, and to obtain the confidence interval for the amount of heterogeneity in meta-analysis. Results In case, the Q1 distribution obtained 95%CI 0.07 to 2.20, while the Q2 distribution obtained 95%CI 0.00 to 1.41; The proposed method Q2 narrowed down the range of confidence interval. Conclusion On account of improving the accuracy of Q-statistic distribution, the proposed method effectively strengthens the coverage probabilities of the confidence interval for the amount of heterogeneity. And the proposed method can also improve the precision of the confidence interval estimation for the amount of heterogeneity.

    Release date:2016-09-07 10:58 Export PDF Favorites Scan
  • Quantitative Analysis of Bias of Each Study in Meta-analysis

    ObjectiveStudy how to quantify the bias of each study and how to estimate them. MethodIn the random-effect model, it is commonly assumed that the effect size of each study in meta-analysis follows a skew normal distribution which has different shape parameter. Through introducing a shape parameter to quantify the bias and making use of Markov estimation as well as maximum likelihood estimation to estimate the overall effect size, bias of each study, heterogeneity variance. ResultIn simulation study, the result was closer to the real value when the effect size followed a skew normal distribution with different shape parameter and the impact of heterogeneity of random effects meta-analysis model based on the skew normal distribution with different shape parameter was smaller than it in a random effects metaanalysis model. Moreover, in this specific example, the length of the 95%CI of the overall effect size was shorter compared with the model based on the normal distribution. ConclusionIncorporate the bias of each study into the random effects meta-analysis model and by quantifying the bias of each study we can eliminate the influence of heterogeneity caused by bias on the pooled estimate, which further make the pooled estimate closer to its true value.

    Release date:2016-10-02 04:54 Export PDF Favorites Scan
  • Multi-Levels Statistical Model in the Heterogeneity Control of Meta-analysis

    Through collecting and synthesizing the paper concerning the method of dealing with heterogeneity in the meta analysis, to introduce the multi-levels statistical models, such as meta regression and baseline risk effect model based on random effects, and random effects model based on hierarchical bayes, and to introduce their application of controlling the meta analysis heterogeneity. The multi-levels statistical model will decompose the single random error in the traditional model to data structure hierarchical. Its fitting effect can not only make the meta-analysis result more robust and reasonable, but also guide clinical issues through the interpretation of association variable.

    Release date:2016-09-07 11:06 Export PDF Favorites Scan
  • Causal forest in the evaluation of heterogeneity of treatment effects in medicine: basic principles and application

    Randomized controlled trials are the gold standard for evaluating the effects of medical interventions, primarily providing estimates of the average effect of an intervention in the overall study population. However, there may be significant differences in the effect of the same intervention across sub-populations with different characteristics, that is, treatment heterogeneity. Traditional subgroup analysis and interaction analysis tend to have low power to examine treatment heterogeneity or identify the sources of heterogeneity. With the recent development of machine learning techniques, causal forest has been proposed as a novel method to evaluate treatment heterogeneity, which can help overcome the limitations of the traditional methods. However, the application of causal forest in the evaluation of treatment heterogeneity in medicine is still in the beginning stage. In order to promote proper use of causal forest, this paper introduces its purposes, principles and implementation, interprets the examples and R codes, and highlights some attentions needed for practice.

    Release date:2023-04-14 10:48 Export PDF Favorites Scan
  • Exploring heterogeneity of stroke-patients with latent class analysis based on patient reported outcomes

    ObjectiveTo categorize and describe stroke-patients based on factors related to patient reported outcomes. MethodsA questionnaire survey was conducted among stroke-patients in nine hospitals and communities in Shanxi Province. The general information questionnaire and stroke-patient reported outcome manual (Stroke-PROM) were completed. Latent profile analysis was used to analyze the scores of Stroke-PROM, and the explicit variables of the model were the final scores of each dimension. ANOVA and correlation analysis were used to measure the correlation between the factors and subtypes. ResultsFour unique stroke-patient profiles emerged, including a low physiological and low social group (9%), a high physiological and middle social group (40%), a middle physiological and middle social group (26%), and a middle physiological and high social group (25%). There were significant differences in scores of four areas among patients with different subtypes (P<0.05). Moreover, there was a correlation between age, payment, exercise and subtypes (P<0.05). ConclusionThere are obvious grouping characteristics for stroke patients. It is necessary to focus on stroke patients who are advanced in age, have a self-funded status and lack exercise, and provide targeted nursing measures to improve their quality of life.

    Release date:2023-04-14 10:48 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content