west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Hydrogel" 15 results
  • PREPARATION OF HIGH VISCOUS CHITOSAN/GLYCEROL PHOSPHATE AND PRELIMINARY STUDIES ONITS PROPERTIES

    【Abstract】 Objective To increase the viscosity of chitosan/glycerol phosphate(C/GP)and to improve its preparation technique in order to develop the appl ication range of C/GP. Methods Chitosan was treated by high-pressure vapor steril ization in order to prepare high viscous C/GP(HV-C/GP)and prepare C/GP by standard methods. The rheologic changes of HV-C/GP and C/GP were detected dynamically by the Gemini rheometer. The initial solution viscosity, gelation temperature and gelation time were evaluated after the viscosity of the materials were increased. Two gelation materials were placed into continuous flow thermostated cells under the same condition and harvest them at predetermined time intervals, 1st, 2nd, 5th, 10th and 25th days, then they were dried, weighed and the mass loss rate was calculated. Ultrastructure of the freeze-dried samples was visual ized by the scanning electron microscope. Results The initial viscosity of C/GP was 1.81 Pas and that of HV-C/GP was 17.24 Pas. The latter one increased 10 times as well as the former one. The gelation temperature of C/GP was 37°C and that of HV-C/GP was 34°C. There was no remarkable difference in gelation time between them. The mass loss rate of HV-C/GP at first day was 72.5% and at 25th days was 90.8%, while that of C/GP was 55.4% and 78.2%. Porous network structure was observed by the scanning electron microscope in both of them. The pore diameter of C/GP was 50-100 μm and that of HV-C/GP was 30-50 μm, which was obviously smaller than the former. Conclusion The viscosity of HV-C/GP prepared by improved technique obviously increases and the thermosensitivity has no significant changes. The degradation time of HV-C/GP in vitro lengthens. The micrographs show that the HV-C/GP gels are porous and the pore diameter are smaller than C/GP.

    Release date:2016-09-01 09:09 Export PDF Favorites Scan
  • Preparation of collagen-polysaccharide composite hydrogels and research progress in biomedical applications

    Collagen contains abundant cell binding motifs, which are conducive to adhesion, migration, and differentiation, maintain cell vitality and promote cell proliferation. However, pure collagen hydrogel has some shortcomings such as poor mechanical properties, poor thermal stability and fast degradation. Numerous studies have shown that the properties of collagen can be improved by combining it with natural polysaccharides such as alginate, chitosan, hyaluronic acid and cellulose. In this paper, the research status and biological application fields of four kinds of composite hydrogels, including collagen-alginate composite hydrogels, collagen-chitosan hydrogels, collagen-hyaluronic acid hydrogels and collagen-cellulose hydrogels, were summarized. The common preparation methods of four kinds of composite hydrogels were introduced, and the future development direction of collagen-based composite hydrogels was prospected.

    Release date:2024-12-27 03:50 Export PDF Favorites Scan
  • Research progress in hydrogels in tissue engineering trachea

    In cases where a tracheal injury exceeds half the length of the adult trachea or one-third of the length of the child trachea, it becomes difficult to perform end-to-end anastomosis after tracheal resection due to excessive tension at the anastomosis site. In such cases, tracheal replacement therapy is required. Advances in tissue engineering technology have led to the development of tissue engineering tracheal substitutes, which have promising applications. Hydrogels, which are highly hydrated and possess a good three-dimensional network structure, biocompatibility, low immunogenicity, biodegradability, and modifiability, have had wide applications in the field of tissue engineering. This article provides a review of the characteristics, advantages, disadvantages, and effects of various hydrogels commonly used in tissue engineering trachea in recent years. Additionally, the article discusses and offers prospects for the future application of hydrogels in the field of tissue engineering trachea.

    Release date:2025-07-23 03:13 Export PDF Favorites Scan
  • Progress in hydrogel implantation in treatment of heart failure

    Heart failure affects quality of life and life expectancy of tens of millions of individuals. There are no available economic and effective treatments for end-stage heart failure. Hydrogels are novel tissue engineering materials, which have the potential to ameliorate myocardium remodeling, increase cardiac output, improve quality of life and prolong life span by implantation into myocardium. The preclinical experiments and clinical trials have greatly explored the function of hydrogels in heart failure. In this review, we summarized the approaches of implantation, mechanism and clinical outcomes of the hydrogels.

    Release date:2022-04-28 09:22 Export PDF Favorites Scan
  • Hydrogel-based vascularization strategy in the field of bone tissue engineering

    Bone tissue regeneration and blood vessel formation are inseparable. How to realize the vascularization of bone repair scaffolds is an urgent problem in bone tissue engineering. The growth and development, mineralization maturity, reconstruction and remodeling, and tissue regeneration of bone are all based on forming an excellent vascularization network. In recent years, more and more researchers have used hydrogels to carry different cells, cytokines, metal ions and small molecules for in vitro vascularization and application in bone regeneration. Based on this background, this article reviews the hydrogel-based vascularization strategies in bone tissue engineering.

    Release date:2023-04-24 08:49 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON HYDROGEL DRESSING IN VEIN INJURY PREVENTION AND TREATMENT

    Objective To observe the efficacy of hydrogel dressings in preventing and treating vein injury of rabbits so as to provide a experimental evidence for cl inical appl ication. Methods Twenty-four healthy large-eared Japanese rabbits (48 ears) were choosen, weighing (2.15 ± 0.15) kg, and divided into 3 groups randomly. The vein injury models were made byintravenously infusing 20% mannite (2.5 mL/kg). The sites of puncture were treated with hydrogel dressings (group A, n=8) and 25%MgSO4 (group B, n=8) 5 minutes after infusion. The sites of puncture were not treated as a blank control (group C, n=8). The tissue specimens were collected from the auricular veins at 24 hours after mannite infusion for histological observation by HE staining. The injury of the vessel wall, hemorrhage around the vessels, infiltration of inflammatory cells, and disturbance of circulation were observed to evaluate the injury degree of vein. Results There existed redness and congestion in the injured veins of each group. HE staining showed that in both groups A and B, the vessel wall was sl ightly injured and hemorrhage around the vessel was mild. There existed infiltration of inflammatory cells in the vessel wall and surrounding tissues. There also existed congestion and thrombus in the vessel lumen in these two groups. While in group C, the injury of vessel wall was severe, and schistic bleeding in the surrounding tissue of the vessel was existed. The severe congestion and thrombus in the vessel lumen was observed. There was no significant difference among three groups in the extent of vein wall injury and hemorrhage around the vessel (P gt; 0.05). The degree of infiltration of inflammatory cells and circulatory disturbance in both groups A and B were significantly less than that of group C (P lt; 0.05); but there was no significant difference between groups A and B (P gt; 0.05). Conclusion Hydrogel dressing is helpful to prevent vein injury of rabbits induced by mannite.

    Release date:2016-09-01 09:08 Export PDF Favorites Scan
  • Research progress on anti-swelling hydrogels in biomedical field

    Hydrogel is a kind of degradable hydrophilic polymer, but excessive hydrophilicity leads to larger volume, lower elastic modulus and looser structure, which further affect its use. Especially in the field of biomedical engineering, excessive swelling of the hydrogel can compress the nerves and improve degradation rate resulting in mismatch of tissue growth and released ions. Therefore, anti-swelling hydrogel has been a research hotspot in recent years. This paper reviews the recent research progress on anti-swelling hydrogel, and expounds the application mechanism and preparation method of hydrogel in biomedical engineering, aiming to provide some references for researchers in the field of anti-swelling hydrogel.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7

    ObjectiveTo prepare of a novel functional self-assembling peptide nanofiber hydrogel scaffold RADKPS designed with linking the short functional motif of bone morphogenetic protein 7 (BMP-7) and to evaluate its biocompatibility so as to provide the experimental basis for in vivo studies on regeneration of degenerated nucleus pulposus tissue. MethodA functional self-assembling peptide RADA-KPSS was designed by linking the short functional motif of BMP-7 to the self-assembling peptide RADA16-I. And the novel functional self-assembling peptide RADKPS was finally prepared by isometric mixing RADA16-I with RADA-KPSS. The structure characteristic of the functional self-assembling peptide nanofiber hydrogel scaffold RADKPS was evaluated by general observation and atomic force microscopy. Bone marrow mesenchymal stem cells (BMSCs) were isolated from 3-month-old New Zealand white rabbits and cultured. After the 3rd generation BMSCs were seeded on the peptide nanofiber hydrogel scaffold RADKPS for 7 days, the cellular compatibility of RADKPS was evaluated through scanning electron microscopy assay, cellular fluorescein diacetate/propidium iodide staining, and MTT assay. 1%RADKPS was injected into isolated intervertebral disc organs from 6-month-old New Zealand white rabbits, then the organs were cultured and the cellular activity of the intervertebral disc organs was observed. The blood compatibility of RADKPS was evaluated with hemolytic assay. After RADKPS was implanted into subcutaneous part of Kunming mice (aged 6-8 weeks) for 28 days, general observation and HE staining were carried out to evaluate the tissue compatibility. ResultsThe functional self-assembling peptide solution RADKPS presented a homogeneous transparent hydrogel-like. Atomic force microscopy revealed that the RADKPS could self-assemble into three-dimensional nanofiber hydrogel scaffolds; the fibre diameter was (25.68±4.62) nm, and the fibre length was (512.42±32.22) nm. After BMSCs cultured on RADKPS for 7 days, scanning electron microscopy showed that BMSCs adhered to the scaffolds. And cell viability was maintained over 90%. MTT assay revealed that RADKPS of 0.1%, 0.05%, and 0.025% could increase the proliferation of BMSCs. The result of hemolytic assay revealed that the hemolysis rates of the RADKPS solutions with different concentrations were less than 5%, indicating that it met the requirement of hemolytic assay standard for medical biomaterials. After subcutaneous implantation, no vesicle, erythema, and eschar formation around injection site were observed. Meanwhile, HE staining showed inflammatory cells infiltration (lymphocytes), substitution of hydrogel scaffold by fibrous tissue, and good tissue compatibility. ConclusionsThe novel functional self-assembling peptide nanofiber hydrogel scaffold RADKPS has good biocompatibility and biological reliability, which would be suitable for tissue engineering repair and regeneration of nucleus pulposus tissue.

    Release date: Export PDF Favorites Scan
  • PREPARATION AND BIOCOMPATIBILITY OF IN SITU CROSSLINKING HYALURONIC ACID HYDROGEL

    Objective To fabricate in situ crosslinking hyaluronic acid hydrogel and evaluate its biocompatibility in vitro. Methods The acrylic acid chloride and polyethylene glycol were added to prepare crosslinking agent polyethylene glycol acrylate (PEGDA), and the molecular structure of PEGDA was analyzed by Flourier transformation infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy. Hyaluronic acid hydrogel was chemically modified to prepare hyaluronic acid thiolation (HA-SH). And the degree of HA-SH was analyzed qualitatively and quantitatively by Ellman method. HA-SH solution in concentrations (W/V) of 0.5%, 1.0%, and 1.5% and PEGDA solution in concentrations (W/V) of 2%, 4%, and 6% were prepared with PBS. The two solutions were mixed in different ratios, and in situ crosslinking hyaluronic acid hydrogel was obtained; the crosslinking time was recorded. The cellular toxicity of in situ crosslinking hyaluronic acid hydrogel (1.5% HA-SH and 4% PEGDA mixed) was tested by L929 cells. Meanwhile, the biocompatibility of hydrogel was tested by co-cultured with human bone mesenchymal stem cells (hBMSCs). Results Flourier transformation infrared spectroscopy showed that most hydroxyl groups were replaced by acrylate groups; 1H nuclear magnetic resonance spectroscopy showed 3 characteristic peaks of hydrogen representing acrylate and olefinic bond at 5-7 ppm. The thiolation yield of HA-SH was 65.4%. In situ crosslinking time of hyaluronic acid hydrogel was 2 to 70 minutes in the PEGDA concentrations of 2%-6% and HA-SH concentrations of 0.5%-1.5%. The hyaluronic acid hydrogel appeared to be transparent. The toxicity grade of leaching solution of hydrogel was grade 1. hBMSCs grew well and distributed evenly in hydrogel with a very high viability. Conclusion In situ crosslinking hyaluronic acid hydrogel has low cytotoxicity, good biocompatibility, and controllable crosslinking time, so it could be used as a potential tissue engineered scaffold or repairing material for tissue regeneration.

    Release date: Export PDF Favorites Scan
  • EFFECT OF COMPOUND PATTERN OF CERAMIC BOVINE BONE AND HYDROGEL ON ATTACHMENT AND GROWTH OF BONE MARROW STOMAL CELL

    OBJECTIVE: To investigate the effect of compound pattern of ceramic bovine bone (CBB) and hydrogel(HG) on attachment, proliferation and differentiation of bone marrow stromal cell (MSC), and to find out the best way of constructing tissue engineered bone. METHODS: CBB, HG and MSC was compounded in different patterns and sequences to form CBB/HG/MSC (group A), HG/MSC/CBB (group B), CBB/MSC/HA (group C) and CBB/MSC (control group). Attachment and morphology of MSC were observed by scanning electronic microscope; the proliferation of MSC was evaluated by cell count; alkaline phosphatase(ALP) activity was examined by histochemistry and type I collagen synthesis was examined by immunohistochemistry staining 5 and 10 days later. RESULTS: In group A, MSC spread better, and ALP activity of group A was significantly higher than that of group B and control group(P lt; 0.01); but there was no significant difference between group A and group C(P gt; 0.05). There was no significant difference in type I collagen synthesis between four groups on the 5th day; but mean gray scale of type I collagen in group B was significantly higher than that in the other groups on the 10th day(P lt; 0.01). CONCLUSION: Different compound patterns of CBB, HG and MSC affect attachment, proliferation, differentiation of MSC. The compound pattern of CBB/HG/MSC is better than the others.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content