west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "In vivo" 18 results
  • Application of in vivo imaging system to establish and evaluate an experimental mouse model of lung cancer

    Objective To monitor the importance of establishing lung cancer models for immunological treatment through in vivo imaging system (IVIS). Methods In this study, a new optical bioluminescence IVIS was used to confirm the tumour formation and luminescence in male BALB/c nude mice by injecting A549-luc cells. First, A549-luc cells which expressed luciferase stably were transferred into nude mice by tail vein injection in order to establish a stable and reliable model of lung cancer. Then, D-fluorescein potassium salt was intraperitoneally injected every other week. The tumor formation and growth were dynamically observed on day 7th, 14th and 21st by IVIS Spectrum and pathological exam with hematoxylin-eosin staining. Results Animal model of lung cancer was successfully established, and the development of lung cancer was effectively monitored by IVIS real-time fluorescence value which was consistent with pathological exam, and tumor volume was correlated with fluorescence intensity (r=0.7996, P<0.01). Conclusions IVIS has multiple benefits, including high sensitivity and specificity, simple operation, and no radiation. IVIS Spectrum can measure the fluorescence of tumor formed by injection of A549-luc cells in nude mice metastasis of lung cancer in a non-invasive, real-time and dynamic mode, which is worthy of promotion for using in clinical research.

    Release date:2022-02-19 01:09 Export PDF Favorites Scan
  • Research progress of in vivo bioreactor for bone tissue engineering

    ObjectiveTo review the research progress of in vivo bioreactor (IVB) for bone tissue engineering in order to provide reference for its future research direction.MethodsThe literature related to IVB used in bone tissue engineering in recent years was reviewed, and the principles of IVB construction, tissue types, sites, and methods of IVB construction, as well as the advantages of IVB used in bone tissue engineering were summarized.ResultsIVB takes advantage of the body’s ability to regenerate itself, using the body as a bioreactor to regenerate new tissues or organs at injured sites or at ectopic sites that can support the regeneration of new tissues. IVB can be constructed by tissue flap (subcutaneous pocket, muscle flap/pocket, fascia flap, periosteum flap, omentum flap/abdominal cavity) and axial vascular pedicle (axial vascular bundle, arteriovenous loop) alone or jointly. IVB is used to prefabricate vascularized tissue engineered bone that matched the shape and size of the defect. The prefabricated vascularized tissue engineered bone can be used as bone graft, pedicled bone flap, or free bone flap to repair bone defect. IVB solves the problem of insufficient vascularization in traditional bone tissue engineering to a certain extent.ConclusionIVB is a promising method for vascularized tissue engineered bone prefabrication and subsequent bone defect reconstruction, with unique advantages in the repair of large complex bone defects. However, the complexity of IVB construction and surgical complications hinder the clinical application of IVB. Researchers should aim to develop a simple, safe, and efficient IVB.

    Release date:2021-06-07 02:00 Export PDF Favorites Scan
  • Research Progress of Constructing Tissue Engineered Trachea in Vivo

    In vivo transplantation of tracheal grafts utilizes natural environment in vivo to improve cell adhesion, growth and scaffold properties, which can not only promote graft revascularization, but also induce immune tolerance and increase postoperative survival rate. Decellularized trachea with stem cells covering the outside layer and airway epithelial cells covering the inside layer can achieve complete mucosa re-epithelialization, cartilage cell growth and revascularization, using own body as a natural bioreactor to boost the maturity of tissue engineered trachea. Then transplantation at a normotopic in situ positioning is performed. This transplantation strategy provides a promising approach for the treatment of long-segment tracheal defects. This review focuses on the significance and research progress of constructing tissue engineered trachea in vivo.

    Release date: Export PDF Favorites Scan
  • RESEARCH PROGRESS OF IN VIVO BIOREACTOR AS VASCULARIZATION STRATEGIES IN BONE TISSUE ENGINEERING

    ObjectiveTo review the application and research progress of in vivo bioreactor as vascularization strategies in bone tissue engineering. MethodsThe original articles about in vivo bioreactor that can enhance vascularization of tissue engineered bone were extensively reviewed and analyzed. ResultsThe in vivo bioreactor can be created by periosteum, muscle, muscularis membrane, and fascia flap as well as biomaterials. Using in vivo bioreactor can effectively promote the establishment of a microcirculation in the tissue engineered bones, especially for large bone defects. However, main correlative researches, currently, are focused on animal experiments, more clinical trials will be carried out in the future. ConclusionWith the rapid development of related technologies of bone tissue engineering, the use of in vivo bioreactor will to a large extent solve the bottleneck limitations and has the potential values for clinical application.

    Release date: Export PDF Favorites Scan
  • IN VIVO THREE-DIMENSIONAL TRANSIENT MOTION CHARACTERISTICS OF THE SUBAXIAL CERVICAL SPINE IN HEALTHY ADULTS

    ObjectiveTo observe the in vivo three-dimensional (3-D) transient motion characteristics of the subaxial cervical spine in healthy adults. MethodsSeventeen healthy volunteers without cervical spine related diseases were recruited for this study, including 8 males and 9 females with a mean age of 26 years (range, 23-41 years). The vertebral segment motion of each subject was reconstructed with CT, and Rhinoceros 4.0 solid modeling software were used for 3-D reconstruction model of the subaxial cervical spine. In vivo cervical vertebral motion in flexionextension, left and right bending, left and right rotation was observed with dual fluoroscopic imaging system (DFIS). Coordinate systems were established at the vertebral center of C3-7 to obtain the intervertebral range of motion (ROM) and displacement at C3, 4, C4, 5, C5, 6, and C6, 7. The X-axis pointed to the left along the coronal plane, the Y-axis pointed to the back along the sagittal plane, and the Z-axis perpendicular to the X-Y plane pointed to the head. The ROM along X, Y, and Z axises were represented by rotation in flexion-extension (α), in left-right bending (β), and in left-right twisting (γ) respectively, and the displacement in left-right direction (x), in anterior-posterior direction (y), and in proximaldistal direction (z), respectively. ResultsIn flexion and extension, the displacement in anterior-posterior direction of C6, 7 was significantly less that of other segments (P<0.05), but the displacements in left-right direction and in proximaldistal direction showed no significant difference between segments (P>0.05); the ROM values in flexion-extension of C4, 5 and C5, 6 were significantly larger than those of C3, 4 and C6, 7 (P<0.05), and the ROM value in left-right twisting of C4, 5 was significantly larger than those of C5, 6 and C6, 7 (P<0.05), but the ROM value in left-right bending showed no significant difference between segments (P>0.05). In left and right bending, there was no significant difference in the displacement between other segments (P>0.05) except that the displacement in anterior-posterior direction of C3, 4 was significantly larger than that of C4, 5 (P<0.05), and that the displacement in proximal-distal direction of C6, 7 was significantly less than that of C3, 4 and C4, 5 (P<0.05); no significant difference was shown in the ROM value between segments (P>0.05), except that the ROM value in left-right twisting of C3, 4 was significantly larger than that of C5, 6 and C6, 7 (P<0.05). In left and right rotation, the ROM value in left-right twisting of C3, 4 was significantly larger than that of C4, 5 and C6, 7 (P<0.05), and the displacement and ROM value showed no significant differece between other segments (P>0.05). ConclusionThe intervertebral motions of the cervical spine show different characters at different levels. And the 6-degree-of-freedom data of the cervical vertebrae are obtained, these data may provide new information for the in vivo kinematics of the cervical spine.

    Release date: Export PDF Favorites Scan
  • Sensitivity Test of Chemotherapy on Human Colorectal Cancer in Vivo

    Objective To investigate the sensitivity of 5 kinds of chemotherapeutic drugs on human colorectal cancer in vivo. Methods Xenografts in nude mice were set up by tumor tissues from 9 patients with colorectal cancer and nude mice were divided into 6 groups randomly, receiving saline (control group), 5-fluorouracil (5-FU group), doxorubicin(ADM group), mitomycin (MMC group), oxaliplatin (LOHP group), and irinotecan (CPT-11 group), respectively. The inhibitive rates (IR) of xenografts in 5 groups for each patient were calculated. Results The lowest and highest IR of 5 groups were 23.6% and 54.9% in 5-FU group, 23.7% and 69.5% in LOPH group, 23.6% and 82.6% in CPT-11group, 24.1% and 48.1% in MMC group, 5.8% and 20.7% in ADM group, respectively. The IR exceeded 40.0% in 7 patients of LOHP group, 6 patients of CPT-11 group, 4 patients of 5-FU group, and 1 patient of MMC group, respec-tively. Of 9 patients, the IR exceeded 40.0% to 3 kinds of drugs in 3 patients, to 2 kinds of drugs in 4 patients, the IR didn’t exceed 30.0% to 4 kinds of drug (IR was 82.6% to CPT-11) in 1 patient, and the IR didn’t exceed 31.0% to all 5 kinds of drugs in 1 patient. There were statistical differences on the IR of 5 kinds of drugs (H=24.061 2, P=0.000 1). IR of ADM group was statistical lower than 5-FU group, MMC group, LOHP group, and CPT-11 group (P<0.05),but there were no statistical differences between 5-FU group, MMC group, LOHP group, and CPT-11 group (P>0.05). Conclusions The xenografts from same patient have different sensitivity to different chemotherapy drugs, and the same chemotherapy drug corresponds to different IR in different patients. The IR of LOHP and CPT-11 are the highest, following by 5-FU and MMC.

    Release date: Export PDF Favorites Scan
  • APPLICATION OF PKH26 LABELING COMBINED WITH IN VIVO IMAGING TECHNOLOGY IN INTERVERTEBRAL DISC TISSUE ENGINEERING

    Objective To evaluate the influence of PKH26 labeling on the biological function of the goat nucleus pulposus cells and the biological function of seeded cells in nude mice by in vivo imaging techonology. Methods Primary nucleus pulposus cells were isolated by enzymatic digestion from the nucleus pulposus tissue of the 1-year-old goat disc. The nucleus pulposus cells at passage 1 were labeled with PKH26 and the fluorescent intensity was observed under the fluorescence microscopy. The labeled cells were stained with toluidine blue and collagen type II immunocytochemistry. The cells viability and proliferation characteristics were assessed by trypan blue staining and MTT assay, respectively. Real-time fluorescent quantitative PCR was used to detect the gene expressions of collagen types I and II, and aggrecan. The fluorescent intensity and scope of the nucleus pulposus cells-scaffold composite in vivo for 6 weeks after implanting into 5 6-week-old male nude mice were measured by in vivo imaging technology. Results Primary nucleus pulposus cells were ovoid in cell shape, showing cluster growth, and the cells at passage 1 showed chondrocyte-like morphology under the inverted phase contrast microscope. The results of toluidine blue and collagen type II immunocytochemistry staining for nucleus pulposus cells at passage 1 were positive. The fluorescent intensity was even after labeling, and the cell viability was more than 95% before and after PKH26 labeling. There was no significant difference in cell growth curve between before and after labeling (P gt; 0.05). The real-time fluorescent quantitative PCR showed that there was no significant difference in gene expressions of collagen types I and II, and aggrecan between before and after labeling (P gt; 0.05). Strong fluorescence in nucleus pulposus cells-scaffold composite was detected and by in vivo imaging technology. Conclusion The PKH26 labeling has no effect on the activity, proliferation, and cell phenotype gene expression of the nucleus pulposus cells. A combination of PKH26 labeling and in vivo imaging technology can track the biological behavior of the cells in vivo.

    Release date:2016-08-31 04:06 Export PDF Favorites Scan
  • Dielectric properties of tidal volume changes in rabbit lung tissue in the 100 MHz~1 GHz band

    This paper investigates the variation of lung tissue dielectric properties with tidal volume under in vivo conditions to provide reliable and valid a priori information for techniques such as microwave imaging. In this study, the dielectric properties of the lung tissue of 30 rabbits were measured in vivo using the open-end coaxial probe method in the frequency band of 100 MHz to 1 GHz, and 6 different sets of tidal volumes (30, 40, 50, 60, 70, 80 mL) were set up to study the trends of the dielectric properties, and the data at 2 specific frequency points (433 and 915 MHz) were analyzed statistically. It was found that the dielectric coefficient and conductivity of lung tissue tended to decrease with increasing tidal volume in the frequency range of 100 MHz to 1 GHz, and the differences in the dielectric properties of lung tissue for the 6 groups of tidal volumes at 2 specific frequency points were statistically significant. This paper showed that the dielectric properties of lung tissue tend to vary non-linearly with increasing tidal volume. Based on this, more accurate biological tissue parameters can be provided for bioelectromagnetic imaging techniques such as microwave imaging, which could provide a scientific basis and experimental data support for the improvement of diagnostic methods and equipment for lung diseases.

    Release date:2024-06-21 05:13 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF IN VIVO TWO-PHOTON IMAGING IN SPINAL CORD

    Objective To review the in vivo imaging research progress of two-photon microscopy (TPM) in spinal cord. Methods The recent literature concerning in vivo two-photon imaging of axon, microglia, and calcium in transgenic mice spinal cord was extensively consulted and reviewed. Results In vivo two-photon imaging of spinal cord provide dynamic information about axonal degeneration and regeneration, microglial accumulation, and calcium influx after spinal cord injury. Conclusion TPM in vivo imaging study on spinal cord will provide theoretical foundation for pathophysiologic process of spinal cord injury.

    Release date: Export PDF Favorites Scan
  • In vivo tumor imaging and therapy based on near-infrared cadmium-free quantum dots

    Near-infrared fluorescence imaging technology, which possesses superior advantages including real-time and fast imaging, high spatial and temporal resolution, and deep tissue penetration, shows great potential for tumor imaging in vivo and therapy. Ⅰ-Ⅲ-Ⅵ quantum dots exhibit high brightness, broad excitation, easily tunable emission wavelength and superior stability, and do not contain highly toxic heavy metal elements such as cadmium or lead. These advantages make Ⅰ-Ⅲ-Ⅵ quantum dots attract widespread attention in biomedical field. This review summarizes the recent advances in the controlled synthesis of Ⅰ-Ⅲ-Ⅵ quantum dots and their applications in tumor imaging in vivo and therapy. Firstly, the organic-phase and aqueous-phase synthesis of Ⅰ-Ⅲ-Ⅵ quantum dots as well as the strategies for regulating the near-infrared photoluminescence are briefly introduced; secondly, representative biomedical applications of near-infrared-emitting cadmium-free quantum dots including early diagnosis of tumor, lymphatic imaging, drug delivery, photothermal and photodynamic therapy are emphatically discussed; lastly, perspectives on the future directions of developing quantum dots for biomedical application and the faced challenges are discussed. This paper may provide guidance and reference for further research and clinical translation of cadmium-free quantum dots in tumor diagnosis and treatment.

    Release date:2024-06-21 05:13 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content