Objective To introduce the research advances of scaffold materials of intervertebral disc tissue engineering. Methods The recent original articlesabout the scaffolds in intervertebral disc tissue engineering were extensively reviewed. Results At present, agarose, alginate gel, collagentype Ⅰ, PLA, PGAare still major scaffold materials for intervertebral disc tissue engineering because of their good biocompatibility. Conclusion It is one of the popular studies on current intervertebral disc tissue engineering to explore the ideal scaffold materials.
Objective To explore a practical method of culturing discs organ system by observing the changes of the nucleus pulposus after the whole intervertebral discs (including cartilage end-plate, nucleus pulposus, and annulus fibrous)were cultivated. Methods A total of 335 intervertebral discs were taken out completely from 60 healthy SD rats (about150 g) aged 5-6 weeks of clear grade and rinsed by high osmotic sal ine solution containing heparin, then put to the culture plate after being divided into 5 groups randomly. The whole intervertebral discs were cultured with high osmotic (410 mOsmol/ kg) culture medium and changed the medium once every day, then the cell viabil ity (n=15), HE staining (n=15), Safranin O staining (n=15), and immunohistochemistry staining (n=2) were observed at 0, 3, 7, 14, and 21 days; RT-PCR result (n=5) was observed at 0, 3, 7, and 14 days. Results The cell viabil ity was not changed significantly within 14 days (P gt; 0.05) and was significantly lower at 21 days than at other time points (P lt; 0.01). The immunohistochemistry staining results for collagen type II were positive in nucleus pulposus cells at every time point. HE staining showed that the tissue integrity and morphology of the whole intervertebral discs were not changed within 14 days. Safranin O staining showed no significant difference in the matrix grey scale within 14 days (P gt; 0.05) and significant differences between 21 days and 0-14 days (P lt; 0.05). RT-PCR results showed that the mRNA expression of collagen type I increased with time, but the expressions of collagen type II, aggrecan, and decorin decreased, showing significant differences in the mRNA expressions of the matrix protein at each time point (P lt; 0.05). Conclusion High osmotic sal ine solution containing heparin could be used to cultivate the whole intervertebral discs, it is an ideal model for futher studies on physiology and pathology of intervertebral discs.
Objective Bone marrow mesenchymal stem cells (BMSCs) transplantation can potentially regenerate the degenerated intervertebral disc, with the underlying regenerating mechanism remaining largely unknown. To investigate the potential of human BMSCs protecting nucleus pulposus cells (NPCs) from oxidative stress-induced apoptosis in a coculturesystem, and to illustrate the possible mechanisms of BMSCs transplantation for intervertebral disc regeneration. Methods BMSCs collected by density gradient centrifugation in Percoll solution were cultured and sub-cultured till passage 3, and the surface molecules of CD34, CD45, and CD13 were identified. NPCs were isolated by collagenase digestion and the chondrocyte l ike phenotype was confirmed by morphologic observation after HE staining, inverted phase contrast microscope, proteoglycan, and collagen type II expression after toluidine blue and immunocytochemistry staining. The 3rd passage BMSCs and the 1st passage NPCs were divided into four groups: group A, NPCs (1 × 106 cells) were cultured alone without apoptosis inducing (negative control); group B, NPCs (1 × 106 cells) were co-cultured with BMSCs (1 × 106 cells) with apoptosis inducing; group C, NPCs (1 × 106 cells) were co-cultured with BMSCs (3 × 105 cells) with apoptosis inducing; group D, NPCs (1 × 106 cells) were cultured alone with apoptosis inducing (positive control). After 3 or 7 days of culture or co-culture, the NPCs in groups B, C, and D were exposed to 0.1 mmol hydrogen peroxide for 20 minutes to induce apoptosis. With DAPI staining cellular nucleus, Annexin-V/propidium iodide staining cellular membrane for flow cytometry analysis, the apoptosis of NPCs in each group was studied both qual itatively and quantitatively. Besides, the changes in Bax/Bcl-2 gene transcription and Caspase-3 protein content, were analyzed with semi-quantitative RT-PCR and Western blot. Results BMSCs were successfully isolated and CD34-, CD45-, and CD13+ were demonstrated; after isolated from degenerated intervertebral discs and sub-cultured, the spindle-shaped 1st passage NPCs maintained chondrocyte phenotype with the constructive expressions of proteoglycan and collagen type II in cytoplasm. DAPI staining showed the nucleus shrinkage of apoptosis NPCs. Co-cultured with BMSCs for 3 days and 7 days, the apoptosis rates of NPCs in groups B (29.26% ± 8.90% and 18.03% ± 2.25%) and C (37.10% ± 3.28% and 13.93% ± 1.25%) were lower than that in group D (54.90% ± 5.97% and 26.97% ± 3.10%), but higher than that of groupA (15.67% ± 1.74% and 8.87% ± 0.15%); all showing significant differences (P lt; 0.05). Besides, semi-quantitative RT-PCR showed Bcl-2 gene transcription up-regulated (P lt; 0.05) and no significant change of Bax (P gt; 0.05); Western blot result showed that the Caspase-3 protein expression of groups B and C was lower than that of group D, and was higher than that of group A; all showing significant differences (P lt; 0.05). Conclusion In a co-culture system without direct cellular interactions, the oxidative stress-induced apoptosis of human NPCs was amel iorated by BMSCs. The enhanced anti-apoptosis abil ity of NPCs preconditioned by co-culturing with BMSCs might come from the decreased Bax/Bcl-2 gene transcription ratio.
Objective To study the adenovirus-mediated human bone morphogenetic protein-2 gene (Ad-hBMP-2)transferred to the intervertebral disc cells of the New Zealand rabbit in vitro. Methods The cells of New Zealand white rabbitswere isolated from their lumbar discs. The cells were grown in the monolayer and treated with an adenovirus encoding the LacZ gene (Ad-LacZ) and Ad-hBMP-2 (50,100, 150 MOI,multiplicity of infection) in the Dulbecco’s Modified Eagle Medium and the Ham’s F-12 Medium in vitro. Three days after the Ad-hBMP-2 treatment,the expression of hBMP-2 in the cells that had been infected by different dosesof MOI was determined by immunofluorescence and the Western blot analysis, and the expression was determined in the cells with the Ad-LacZ treatment in a dose of 150 MOI. Six days after the Ad-hBMP-2 treatment, mRNA was extracted for the reverse transcription polymerase chain reaction (RT-PCR) and the difference was detected between the control group and the culture group that was treated withAd-hBMP-2 in doses of 50, 100 and 150 MOI so that the expressions of aggrecan and collagen ⅡmRNA could be observed. Results The expression of hBMP-2 in the cells was gradually increased after the transfection in an increasing dose, which was observed by immunofluorescence and the Western blot analysis. At 6 days the aggrecan and collagen type Ⅱ mRNA expressions were up-regulated by Ad-hBMP-2 after the transfection at an increasing viral concentration in the dosedependent manner. Conclusion The results show that Ad-hBMP-2 can transfect the rabbit intervertebral disc cells in vitro with a high efficiency rate and the expression of hBMP-2 after theinfection is dose-dependent in the manner. AdhBMP-2 after transfection can up-regulate the expression of aggrecan and collagen Ⅱ mRNA at an increasing viral concentration.
ObjectiveTo investigate the influence of ISOBAR TTL dynamic internal fixation system on degeneration of adjacent intervertebral disc by MRI measurement of lumbar nucleus pulposus volume in treating lumbar degenerative disease after operation. MethodsBetween March 2010 and October 2011, 34 patients with lumbar intervertebral disc herniation (23 cases of paracentral type and 11 cases of lateral type) underwent operation with ISOBAR TTL dynamic internal fixation system for fixation of single segment, and the clinical data were analyzed retrospectively. There were 20 males and 14 females, aged 39-62 years (mean, 47.5 years). The disease duration was 6-18 months (mean, 14 months). Involved segments included L4, 5 in 21 cases and L5, S1 in 13 cases. The X-ray films and MRI images were taken at 6, 12, 18, 24, 36, and 48 months after surgery. Based on X-ray films, the height of intervertebral space was measured using angle bisectrix method. The nucleus pulposus volume was measured based on the MRI scan. The postoperative change of nucleus pulposus volume and intervertebral disc height were used to evaluate the influence of ISOBAR TTL system on degeneration of adjacent intervertebral disc nucleus pulposus. ResultsThirty patients were followed up 48 months. The height of intervertebral space showed no significant difference between at pre-and post-operation (P>0.05). The nucleus pulposus volume increased after operation, showing no significant difference at 6, 12, and 18 months when compared with preoperative value (P>0.05), but significant difference was found at 24, 36, and 48 months when compared with preoperative value (P < 0.05). The height of nucleus pulposus increased after operation but the width was decreased; the values showed no significant difference at 6, 12, and 18 months when compared with preoperative ones, but showed significant difference at 24, 36, and 48 months when compared with preoperative ones (P < 0.05). The diameter of nucleus pulposus at 18, 24, 36, and 48 months after operation was significantly langer than that at preoperation (P < 0.05). ConclusionISOBAR TTL dynamic internal fixation system can prevent or delay the degeneration of intervertebral discs.
To review the advance in the experimental studies and evaluate the potential therapeutic appl ication of the growth differentiation factor 5(GDF-5) and osteogenic protein 1 (OP-1) in intervertebral disc degeneration.Methods Relevant l iterature at home and abroad publ ished in recent years was searched and analyzedcomprehensively. Results The growth factor was one of the most potential proteins in curing the intervertebral discdegeneration. In vitro, exogenous GDF-5 or OP-1 increased the deoxyribonucleic acid and proteoglycan contents ofboth nucleus pulposus and annlus fibrosis cells types significantly. GDF-5 at 200 ng/mL or OP-1 significantly stimulatedproteoglycan synthesis and collagen synthesis. In vivo, the injection of GDF-5(100 μg) or OP-1(100 μg in 10 μL 5% lactose) resulted in a restoration of disc height, improvement of magnetic resonance imaging scores, and histologic grading scores had statistical significance. Conclusion A single injection of GDF-5 or OP-1 has a reparative capacity on intervertebral discs, presumably based on its effect to stimulate matrix metabol ism of intervertebral disc cells and enhance extracellular matrix production. A single injection of exogenous GDF-5 or OP-1 in the degenerated disc shows a good prospect.
Objective To summarize recent research progress in hydrogel-based growth factors for intervertebral disc degeneration (IDD). Methods The relevant literature on hydrogel-based growth factors for IDD treatment at home and abroad was extensively reviewed, and their advantages and therapeutic effects in repairing IDD were analyzed and summarized. Results Hydrogels exhibit high hydration, biocompatibility, and biodegradability, enabling targeted delivery and sustained release of growth factors such as growth differentiation factors and transforming growth factors. This facilitates enhanced efficacy in promoting cell proliferation, extracellular matrix synthesis, and reducing inflammatory responses. Consequently, hydrogels demonstrate broad application prospects in the repair of IDD. ConclusionResearch on hydrogel-based growth factors for treating IDD demonstrates advantages such as avoiding disc damage caused by repeated injections and controlling growth factor release concentrations. However, drawbacks include the limited variety of loaded growth factors and the need to verify the long-term stability and biocompatibility of hydrogels. Therefore, further research is required on aspects such as the types of loaded growth factors and the long-term stability and biocompatibility of hydrogels to establish an experimental foundation for their clinical application.
Objective To summarize the research progress of microRNA (miRNA) and its non-viral vector in intervertebral disc degeneration (IDD) and to investigate the potential of non-viral vector delivery of miRNA in clinical application. Methods The related literature about the role of miRNA in IDD and its non-viral delivery system was reviewed and analyzed. Results MiRNA can regulate the related gene expression level and further participate in the pathophysiologic process in degenerated intervertebral disc, miRNA delivered by various non-viral vectors has obtained an ideal effect in some diseases. Conclusion MiRNA plays a great role in the cellular and molecular mechanisms of IDD, as a safe and effective strategy for gene therapy, non-viral vector provides new possibilities for IDD treated with miRNA.
Objective To review the progress of the mechanisms of Wnt/β-catenin and nuclear factor-kappa B (NF-кB) pathways in the process of the intervertebral disc degeneration. Methods The related literature about the mechanisms of Wnt/β-catenin and NF-кB pathways in the process of the intervertebral disc degeneration was reviewed, analyzed, and summarized. Results Wnt/β-catenin and NF-кB pathways are both activated in the process of the intervertebral disc degeneration, and exist interaction. However, the specific mechanisms and interactive mediums of Wnt/β-catenin and NF-кB pathways in the process of the intervertebral disc degeneration are still unclear. Conclusion The mechanisms of Wnt/β-catenin and NF-кB pathways in the process of the intervertebral disc degeneration have to be studied deeply.
The material properties and volume proportion of the fibers as well as the cross-sectional area proportion of nucleus pulposus vary greatly in different studies. The effect of these factors on the mechanical behavior of intervertebral discs (IVDs) are uncertain. The IVDs finite element models with different parameters were created to investigate the pressure, height, rotation, stress, and strain of the IVDs under loads: pure compression, rotation after compression or axial moment after compression. The results showed that the material properties of fibers had great impact on the mechanical behavior of IVDs, especially on the rotation angle. When the fiber volume ratio was small, its changes had a significant impact on the rotation angle of the IVDs. The area proportions of nucleus pulposus had relatively little effect on the mechanical behavior of IVDs. The IVDs rotation should be observed when validating the model. By adjusting the elastic modulus or volume ratio of fibers within a reasonable range, a model that could simulate the mechanical behavior of normal IVDs could be obtained. It was reasonable to make the area proportion of nucleus pulposus within 25%–50% for the IVDs finite element model. This study provides guidance and reference for finite element modeling of the IVDs and the investigation of the IVDs degeneration mechanism.