west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "LI Tianwen" 2 results
  • An emerging major: brain-computer interface major

    Brain-computer interface (BCI) is a revolutionizing technology that disrupts traditional human-computer interaction by establishing direct communication and control between the brain and computer, bypassing the peripheral nervous and muscular systems. With the rapid advancement of BCI technology, growing application demands, and an increasing need for specialized BCI professionals, a new academic major—BCI major—has gradually emerged. However, few studies to date have discussed the interdisciplinary nature and training framework of this emerging major. To address this gap, this paper first introduced the application demands of BCI, including the demand for BCI technology in both medical and non-medical fields. The paper also described the interdisciplinary nature of the BCI major and the urgent need for specialized professionals in this field. Subsequently, a training program of the BCI major was presented, with careful consideration of the multidisciplinary nature of BCI research and development, along with recommendations for curriculum structure and credit distribution. Additionally, the facing challenges of the construction of the BCI major were analyzed, and suggested strategies for addressing these challenges were offered. Finally, the future of the BCI major was envisioned. It is hoped that this paper will provide valuable reference for the development and construction of the BCI major.

    Release date: Export PDF Favorites Scan
  • Evaluation methods for the rehabilitation efficacy of bidirectional closed-loop motor imagery brain-computer interface active rehabilitation training systems

    The bidirectional closed-loop motor imagery brain-computer interface (MI-BCI) is an emerging method for active rehabilitation training of motor dysfunction, extensively tested in both laboratory and clinical settings. However, no standardized method for evaluating its rehabilitation efficacy has been established, and relevant literature remains limited. To facilitate the clinical translation of bidirectional closed-loop MI-BCI, this article first introduced its fundamental principles, reviewed the rehabilitation training cycle and methods for evaluating rehabilitation efficacy, and summarized approaches for evaluating system usability, user satisfaction and usage. Finally, the challenges associated with evaluating the rehabilitation efficacy of bidirectional closed-loop MI-BCI were discussed, aiming to promote its broader adoption and standardization in clinical practice.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content