Objective To investigate the myogenic differentiation of mesenchymal stem cells (MSCs) after being transplanted into the local muscle tissues. Methods The serious muscleinjured model was established by the way of radiation injury, incising, and freezing injury in 36 mouses. Purified MSCs derived from bone marrow of male mouse and MSCs induced by5-azacytidine(5-Aza-CR) were transplanted into the local of normal muscle tissues and injured muscle tissues of femal mouse. The quantity of MSCs and the myogenic differentiation of implanted MSCs were detected by the method of double labeling, which included fluorescence in situ DNA hybridization (FISH) and immuno-histochemistry on the 1st, 3rd, 6th, 9th, 12th, and 15th day after transplantation. Results The quantity of implanted MSCs decreased as timepassed. MSCs’ differentiation into myoblasts and positive expression of desmin were observed on the 15th day in purified MSCs group and on the 6th day in induced MSCs groups. Conclusion MSCs could differentiate into myoblasts after being implanted into the local of muscle tissues. The differentiationoccurs earlier in the induced MSCs group than that in purified MSCs group.
Objective To investigate the effect of homograft of marrow mesenchymal stem cells (MSCs) seeded onto poly-L-lactic acid (PLLA)/gelatin on repair of articular cartilage defects. Methods The MSCs derived from36 Qingzilan rabbits, aging 4 to 6 months and weighed 2.5-3.5 kg were cultured in vitroand seeded onto PLLA/gelatin. The MSCs/ PLLA/gelatin composite was cultured and transplanted into full thickness defects on intercondylar fossa. Thirty-six healthy Qingzilan rabbits were made models of cartilage defects in the intercondylar fossa. These rabbits were divided into 3 groups according to the repair materials with 12 in each group: group A, MSCs and PLLA/gelatin complex(MSCs/ PLLA/gelatin); group B, only PLLA/gelatin; and group C, nothing. At 4,8 and 12 weeks after operation, the gross, histological and immunohistochemical observations were made, and grading scales were evaluated. Results At 12 weeks after transplantation, defect was repaired and the structures of the cartilage surface and normal cartilage was in integrity. The defects in group A were repaired by the hylinelike tissue and defects in groups B and C were repaired by the fibrous tissues. Immunohistochemical staining showed that cells in the zones of repaired tissues were larger in size, arranged columnedly, riched in collagen Ⅱ matrix and integrated satisfactorily with native adjacent cartilages and subchondral bones in group A at 12 weeks postoperatively. In gross score, group A(2.75±0.89) was significantly better than group B (4.88±1.25) and group C (7.38±1.18) 12 weeks afteroperation, showing significant differences (P<0.05); in histological score, group A (3.88±1.36) was better than group B (8.38±1.06) and group C (13.13±1.96), and group B was better than group C, showing significant differences (P<0.05). Conclusion Transplantation of mesenchymal stem cells seeded onto PLLA/gelatin is a promising way for the treatment of cartilage defects.
Objective To investigate the feasibility of differentiation of the marrow mesenchymal stem cells (MSCs) into the cells of the skin appendages andthe mechanism of their involvement in the wound healing. Methods The bone marrow was collected from Wistar rats by the flushing of the femurs, MSCs were isolated and purified by the density gradient centrifugation. Then, the MSCs were amplified and labelled with 5-bromo-2′-deoxyuridine (BrdU). The full-thickness skin wounds with an area of 1 cm×1 cm were made on the midback of the homogeneous male Wistar rats. At the same time, 1×106/ml BrdU-labelled MSCs were infused from thepenile vein. The specimens were harvested from the wound tissues on the 3rd dayand the 7th day after operation and were immunohistochemically stained by either BrdU or BrdU and pan-keratin. Results The BrdU positive cells appeared in thehypodermia, the sebaceous glands, and the hair follicles of the wounds, as wellas the medullary canal of the femurs. The double-staining showed the BrdU positive cells in the sebaceous glands and the hair follicles of the wounds expressedpan-keratin simultaneously. Conclusion During the course of the wound healing, MSCs are involved in the wound repair and can differentiate into the cells ofthe skin appendages under the microenvironment of the wound.
Objective To monitor the stem cell migration into the bone defect following an injection of the labeled mesenchymal stem cells (MSCs) by the enha nced green fluorescent protein (EGFP)technology and to provide insights into an application of MSCs for the fracture healing. Methods Isolated MSCs from the rabbit femur marrow were culture-expanded and were labeled by the transfection with the recombinant retrovirus containing the EGFP gene. Then, some labeled MSCs were cultured under the osteogenic differentiation condition and the phenotype was examined. After the fracture of their bilateral ulna, 18 rabbits were divide d into two groups. The labeled MSCs were injected into the aural vein at 1×107 cells/kg in the experimental group and the unmarked MSCs were injected in the control group 24 hours before surgery, and 1 and 24 hours after surgery, res pectively. Necropsies were performed 2 days after surgery in the two groups. The sections from the left defects were observed under the fluorescence microscope and the others were analyzed by the bright-field microscopy after the HE staining. Results The EGFP did not affect the MSCs viability. After the labeled cells were incubated in the osteogenic medium alkaline phosphatase, the calcium nodule s were observed. All the rabbits survived. The tissue of haematoma was observed in the bone defects and the fluorescent cells were found in the experimental gr oup, but no fluorescent cells existed in the control group. Conclusion The EG FP labeled MSCs can undergo osteogenic differentiation in vitro and can mig rate into bone defects after their being injected into the peripheral vein.
Objective To explore the effect of the platelet-rich plasma (PRP) on proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells (MSCs) in China goat in vitro. Methods MSCs from the bone marrow of China goat were cultured. The third passage of MSCs were treated with PRP in the PRP group (the experimental group), but the cells were cultured with only the fetal calf serum (FCS) in the FCS group (the control group). The morphology and proliferation of the cells were observed by an inverted phase contrast microscope. The effect of PRP on proliferation of MSCs was examined by the MTT assay at 2,4,6 and 8 days. Furthermore, MSCs were cultured withdexamethasone(DEX)or PRP; alkaline phosphatase (ALP) and the calcium stainingwere used to evaluate the effect of DEX or PRP on osteogenic differatiation of MSCs at 18 days. The results from the PRP group were compared with those from the FCS group. Results The time for the MSCs confluence in the PRP group was earlier than that in the FCS group when observed under the inverted phase contrast microscope. The MTT assay showed that at 2, 4, 6 and 8 days the mean absorbance values were 0.252±0.026, 0.747±0.042, 1.173±0.067, and 1.242±0.056 in the PRP group, but 0.137±0.019, 0.436±0.052, 0.939±0.036, and 1.105±0.070 in the FCS group. The mean absorbance value was significantly higher in the PRP group than in the FCS group at each observation time (P<0.01). Compared with the FCS group, the positive-ALP cells and the calcium deposition were decreased in the PRP group; however, DEX could increase boththe number of the positiveALP cells and the calcium deposition. Conclusion The PRP can promote proliferation of the MSCs of China goats in vitro but inhibit osteogenic differentiation.
Objective To construct recombinant adenovirus vector containing human transforming growth factor beta 3 (TGF-β3), which was transfected into marrow mesenchymal stem cells(MSCs) and to observe its expression. Methods The cDNA TGF-β3 was intergraded into the shuttle vector of pAdTrack-CMV and recombinated with adenovirus skeleton vector pAdEasy-1 by homologous recombination. Then the product was transfected into package cell HEK293 by lipofedtamine and the recombinant adenovirus expressing the TGF-β3genewas generated. The rabbit’s MSCs were isolated, cultivated, purified, and then transfected with recombinant adenovirus containing the TGF-β3 gene. The green fluorescence protein expression was observed after 10 days, and the TGF-β3 expression was observed in MSCs transfected by recombinated adenovirus with TGF-β3 gene after 4 days. Results PCR showed that TGF-β3 cDNA was inserted into the recombinantadenoviral plasmid. The recombinant virus vectors with TGF-β3 gene were collected by the packaging HEK293 cells. The fusion rate of MSCs was 70%-80% with an intensive adhesion and uninform shape after the cultured 10th day. Fluorescent microscopy and immunocytochemistry demonstrated that TGF-β3 was expressed in MSCs. Conclusion Successful construction of human TGF-β3 recombinant adenovirus and its expression in MSCs provide a basis of research for the gene therapy of wound healing.
Objective To optimize the in vitro culture system of C57/BL6 marrow mesenchymal stem cells (MSCs) and to investigate the effect of alcohol and acetaldehyde on MSCs. Methods The MSCs were isolated from the femur marrow of C57/BL6 mice and were cultured in the optimized system, so that highlypurified MSCs were harvested and identified by immunohistochemistry. Then, MSCs were cultured in the medium containing alcohol or its metabolic product acetaldehyde, with the following concentration groups: alcohol 5.7,17.0,50.0,100.0 and 150.0 mmol/L; acetaldehyde 4.5, 0.9, 0.18, 0.036, 0.007 2, 0.001 44 , 0.000 28 mmol/L. MSCs were cultured with α-MEM as the control group. After 3 days, their proliferation activity was measured by the MTT method. Results MSCs within 6 passages had a good stability and a high proliferation activity. They were identified to express CD90 but no CD34. The MTT assay showed that alcohol at the concentration greater than 100.0 mmol/L and acetaldehyde at the concentration greater than 4.5 mmol/L could inhibit proliferation of MSCs(P<0.05) . But the proliferation activity might rise with an increase in the acetaldehyde concentration smaller than 0.18 mmol/L(P<0.05) . Conclusion Theoptimized culture system can effectively isolate and culture MSCs. Both alcoholand acetaldehyde can inhibit proliferation of MSCs but toxicity of acetaldehydeis more serious.
Objective To review the advances in repair of spinal cord injury by transplantation of marrow mesenchymal stem cells(MSCs). Methods The related articles in recent years were extensively reviewed,the biological characteristic of MSCs,the experimental and clinical studies on repair of spinal cord injury by transplantation of MSCs,the machanisms of immigration and therapy and the problems were discussed and analysed. Results The experimental and clinical studies demonstrated that the great advances was made in repair of spinal cord injury by transplantation of MSCs. After transplantation, MSCs could immigrate to the position of spinal cord injury, and differentiate into nervelike cells and secrete neurotrophic factors.So it could promote repair of injuryed spinal cord and recovery of neurologicalfunction. Conclusion Transplantation of MSCs was one of effective ways in repair of spinal cord injury, but many problems remain to be resolved.
Objective To evaluate the effect of Schwann cell (SC) on the proliferation of marrow mesenchymal stem cells (MSCs) and provide evidence for application of SC in construction of the tissue engineered vessels.Methods SC and MSCs were harvested from SD rats(weight 40 g). SC were verified immunohstochemically by the S-100 staining, and MSCs were verified by CD 44, CD 105, CD 34 and CD 45. The 3rd passages of both the cells were cocultured in the Transwell system and were amounted by the 3H-TDR integration technique at 1, 3, 5 and 7 days,respectively. The results were expressed by the CPM(counts per minute, CPM) values. However, MSCs on both the layers were served as the controls. The Westernblot was performed to assess the expression of the vascular endothelial growth factor (VEGF), its receptor Flk-1, and the associated receptor neuropilin 1(NRP-1) in SC, the trial cells, and the controls. Results SC had a spindle shape in the flasks, and more than 90% of SC had a positive reaction for the S-100 staining.MSCs expressed CD44 and CD105, and had a negativesignal in CD 34 and CD 45. The CPM values of MSCs in the trial groups were 2 411.00±270.84,3 016.17±241.57,6 570.83±2 848.27 and 6 375.8±1 431.28at 1, 3, 5 and 7 days, respectively. They were significantly higher in their values than the control group (2 142.17±531.63,2 603.33±389.64,2 707.50±328.55,2 389.00±908.01), especially at 5 days (P<0.05). The Western blot indicated that VEGF was expressedobviously in both the SC group and the cocultured MSCs grou,p and was less visible in the control cells. The expressions of Flk-1 and NRP-1 inthe cocultured MSCs were much ber than in the controls. Conclusion SC can significantly promote the proliferation of MSCs when they are cocultured. The peak time of the proliferation effect appeared at 5 days. This effect may be triggered by the up-regulation of VEGF in MSCs, which also leads to the upregulation of Flk-1 and NRP-1 .
Objective To study the effects of platelet-rich plasma(PRP) on the proliferation and osteogenetic activity of the marrow mesenchymal stem cells(MSCs) cultured in vitro to elucidate the cellular and molecularmechanism by which PRP accelerates bone repair.Methods The human MSCs were cultured in vitro and randomly divided into the experimental group(n=9) and control group(n=9). In the experimental group, the MSCs were interfused with PRP(10 μl/ml culture media). The proliferation ability of the cells was tested by flow cytometry and MTT, the osteogenetic activity by alkaline phosphatase(ALP) measuring and tetracycline fluorometry, and cbfal mRNA expression by reverse transcriptPCR.Results PRP could stimulate the MSCs proliferation. The flow cytometry assay showed that the MSCs proportion of S period of the experimental group significantly increased 14.5±0.4 in comparison with that of the control group 7.2±0.5 (P<0.01) after 24 hours. MTT value showed that MSCs proliferatedto platform period earlier in the experimental group than in the control group. There was a significant increase in ALP activity of the experimental group 7.79±1.98,9.51±2.31and 14.03±3.02 when compared with that of the control group 2.06±0.77,2.84±0.82 and 2.58±0.84 after 3, 6 and 9 days(P<0.05). The number of mineral nodes increased. Reverse transcript-PCR showed that the expression of cbfal mRNA were elevated gradually at 2,4 and 8 hours after interfused with PRP.Conclusion The effect of PRP on accelerating bone repair is related to its effects on stimulating the proliferation of MSCs, increasing the cbfal expression and promoting the osteogenetic activity.