west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Medical image" 21 results
  • Cross modal medical image online hash retrieval based on online semantic similarity

    Online hashing methods are receiving increasing attention in cross modal medical image retrieval research. However, existing online methods often lack the learning ability to maintain semantic correlation between new and existing data. To this end, we proposed online semantic similarity cross-modal hashing (OSCMH) learning framework to incrementally learn compact binary hash codes of medical stream data. Within it, a sparse representation of existing data based on online anchor datasets was designed to avoid semantic forgetting of the data and adaptively update hash codes, which effectively maintained semantic correlation between existing and arriving data and reduced information loss as well as improved training efficiency. Besides, an online discrete optimization method was proposed to solve the binary optimization problem of hash code by incrementally updating hash function and optimizing hash code on medical stream data. Compared with existing online or offline hashing methods, the proposed algorithm achieved average retrieval accuracy improvements of 12.5% and 14.3% on two datasets, respectively, effectively enhancing the retrieval efficiency in the field of medical images.

    Release date:2025-04-24 04:31 Export PDF Favorites Scan
  • Study on automatic and rapid diagnosis of distal radius fracture by X-ray

    This article aims to combine deep learning with image analysis technology and propose an effective classification method for distal radius fracture types. Firstly, an extended U-Net three-layer cascaded segmentation network was used to accurately segment the most important joint surface and non joint surface areas for identifying fractures. Then, the images of the joint surface area and non joint surface area separately were classified and trained to distinguish fractures. Finally, based on the classification results of the two images, the normal or ABC fracture classification results could be comprehensively determined. The accuracy rates of normal, A-type, B-type, and C-type fracture on the test set were 0.99, 0.92, 0.91, and 0.82, respectively. For orthopedic medical experts, the average recognition accuracy rates were 0.98, 0.90, 0.87, and 0.81, respectively. The proposed automatic recognition method is generally better than experts, and can be used for preliminary auxiliary diagnosis of distal radius fractures in scenarios without expert participation.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • Segmentation of anterior cruciate ligament images by fusing inflated convolution and residual hybrid attention

    Aiming at the problems of low accuracy and large difference of segmentation boundary distance in anterior cruciate ligament (ACL) image segmentation of knee joint, this paper proposes an ACL image segmentation model by fusing dilated convolution and residual hybrid attention U-shaped network (DRH-UNet). The proposed model builds upon the U-shaped network (U-Net) by incorporating dilated convolutions to expand the receptive field, enabling a better understanding of the contextual relationships within the image. Additionally, a residual hybrid attention block is designed in the skip connections to enhance the expression of critical features in key regions and reduce the semantic gap, thereby improving the representation capability for the ACL area. This study constructs an enhanced annotated ACL dataset based on the publicly available Magnetic Resonance Imaging Network (MRNet) dataset. The proposed method is validated on this dataset, and the experimental results demonstrate that the DRH-UNet model achieves a Dice similarity coefficient (DSC) of (88.01±1.57)% and a Hausdorff distance (HD) of 5.16±0.85, outperforming other ACL segmentation methods. The proposed approach further enhances the segmentation accuracy of ACL, providing valuable assistance for subsequent clinical diagnosis by physicians.

    Release date:2025-04-24 04:31 Export PDF Favorites Scan
  • Non-rigid registration for medical images based on deformable convolution and multi-scale feature focusing modules

    Non-rigid registration plays an important role in medical image analysis. U-Net has been proven to be a hot research topic in medical image analysis and is widely used in medical image registration. However, existing registration models based on U-Net and its variants lack sufficient learning ability when dealing with complex deformations, and do not fully utilize multi-scale contextual information, resulting insufficient registration accuracy. To address this issue, a non-rigid registration algorithm for X-ray images based on deformable convolution and multi-scale feature focusing module was proposed. First, it used residual deformable convolution to replace the standard convolution of the original U-Net to enhance the expression ability of registration network for image geometric deformations. Then, stride convolution was used to replace the pooling operation of the downsampling operation to alleviate feature loss caused by continuous pooling. In addition, a multi-scale feature focusing module was introduced to the bridging layer in the encoding and decoding structure to improve the network model’s ability of integrating global contextual information. Theoretical analysis and experimental results both showed that the proposed registration algorithm could focus on multi-scale contextual information, handle medical images with complex deformations, and improve the registration accuracy. It is suitable for non-rigid registration of chest X-ray images.

    Release date:2023-08-23 02:45 Export PDF Favorites Scan
  • Medical image super-resolution reconstruction via multi-scale information distillation network under multi-scale geometric transform domain

    High resolution (HR) magnetic resonance images (MRI) or computed tomography (CT) images can provide clearer anatomical details of human body, which facilitates early diagnosis of the diseases. However, due to the imaging system, imaging environment and human factors, it is difficult to obtain clear high-resolution images. In this paper, we proposed a novel medical image super resolution (SR) reconstruction method via multi-scale information distillation (MSID) network in the non-subsampled shearlet transform (NSST) domain, namely NSST-MSID network. We first proposed a MSID network that mainly consisted of a series of stacked MSID blocks to fully exploit features from images and effectively restore the low resolution (LR) images to HR images. In addition, most previous methods predict the HR images in the spatial domain, producing over-smoothed outputs while losing texture details. Thus, we viewed the medical image SR task as the prediction of NSST coefficients, which make further MSID network keep richer structure details than that in spatial domain. Finally, the experimental results on our constructed medical image datasets demonstrated that the proposed method was capable of obtaining better peak signal to noise ratio (PSNR), structural similarity (SSIM) and root mean square error (RMSE) values and keeping global topological structure and local texture detail better than other outstanding methods, which achieves good medical image reconstruction effect.

    Release date:2022-12-28 01:34 Export PDF Favorites Scan
  • Research progress on colorectal cancer identification based on convolutional neural network

    Colorectal cancer (CRC) is a common malignant tumor that seriously threatens human health. CRC presents a formidable challenge in terms of accurate identification due to its indistinct boundaries. With the widespread adoption of convolutional neural networks (CNNs) in image processing, leveraging CNNs for automatic classification and segmentation holds immense potential for enhancing the efficiency of colorectal cancer recognition and reducing treatment costs. This paper explores the imperative necessity for applying CNNs in clinical diagnosis of CRC. It provides an elaborate overview on research advancements pertaining to CNNs and their improved models in CRC classification and segmentation. Furthermore, this work summarizes the ideas and common methods for optimizing network performance and discusses the challenges faced by CNNs as well as future development trends in their application towards CRC classification and segmentation, thereby promoting their utilization within clinical diagnosis.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • Research progress on medical image dataset expansion methods

    Computer-aided diagnosis (CAD) systems play a very important role in modern medical diagnosis and treatment systems, but their performance is limited by training samples. However, the training samples are affected by factors such as imaging cost, labeling cost and involving patient privacy, resulting in insufficient diversity of training images and difficulty in data obtaining. Therefore, how to efficiently and cost-effectively augment existing medical image datasets has become a research hotspot. In this paper, the research progress on medical image dataset expansion methods is reviewed based on relevant literatures at home and abroad. First, the expansion methods based on geometric transformation and generative adversarial networks are compared and analyzed, and then improvement of the augmentation methods based on generative adversarial networks are emphasized. Finally, some urgent problems in the field of medical image dataset expansion are discussed and the future development trend is prospected.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • Medical image segmentation data augmentation method based on channel weight and data-efficient features

    In computer-aided medical diagnosis, obtaining labeled medical image data is expensive, while there is a high demand for model interpretability. However, most deep learning models currently require a large amount of data and lack interpretability. To address these challenges, this paper proposes a novel data augmentation method for medical image segmentation. The uniqueness and advantages of this method lie in the utilization of gradient-weighted class activation mapping to extract data efficient features, which are then fused with the original image. Subsequently, a new channel weight feature extractor is constructed to learn the weights between different channels. This approach achieves non-destructive data augmentation effects, enhancing the model's performance, data efficiency, and interpretability. Applying the method of this paper to the Hyper-Kvasir dataset, the intersection over union (IoU) and Dice of the U-net were improved, respectively; and on the ISIC-Archive dataset, the IoU and Dice of the DeepLabV3+ were also improved respectively. Furthermore, even when the training data is reduced to 70 %, the proposed method can still achieve performance that is 95 % of that achieved with the entire dataset, indicating its good data efficiency. Moreover, the data-efficient features used in the method have interpretable information built-in, which enhances the interpretability of the model. The method has excellent universality, is plug-and-play, applicable to various segmentation methods, and does not require modification of the network structure, thus it is easy to integrate into existing medical image segmentation method, enhancing the convenience of future research and applications.

    Release date:2024-04-24 09:50 Export PDF Favorites Scan
  • Brain midline segmentation method based on prior knowledge and path optimization

    To address the challenges faced by current brain midline segmentation techniques, such as insufficient accuracy and poor segmentation continuity, this paper proposes a deep learning network model based on a two-stage framework. On the first stage of the model, prior knowledge of the feature consistency of adjacent brain midline slices under normal and pathological conditions is utilized. Associated midline slices are selected through slice similarity analysis, and a novel feature weighting strategy is adopted to collaboratively fuse the overall change characteristics and spatial information of these associated slices, thereby enhancing the feature representation of the brain midline in the intracranial region. On the second stage, the optimal path search strategy for the brain midline is employed based on the network output probability map, which effectively addresses the problem of discontinuous midline segmentation. The method proposed in this paper achieved satisfactory results on the CQ500 dataset provided by the Center for Advanced Research in Imaging, Neurosciences and Genomics, New Delhi, India. The Dice similarity coefficient (DSC), Hausdorff distance (HD), average symmetric surface distance (ASSD), and normalized surface Dice (NSD) were 67.38 ± 10.49, 24.22 ± 24.84, 1.33 ± 1.83, and 0.82 ± 0.09, respectively. The experimental results demonstrate that the proposed method can fully utilize the prior knowledge of medical images to effectively achieve accurate segmentation of the brain midline, providing valuable assistance for subsequent identification of the brain midline by clinicians.

    Release date:2025-08-19 11:47 Export PDF Favorites Scan
  • A survey of loss function of medical image segmentation algorithms

    Medical image segmentation based on deep learning has become a powerful tool in the field of medical image processing. Due to the special nature of medical images, image segmentation algorithms based on deep learning face problems such as sample imbalance, edge blur, false positive, false negative, etc. In view of these problems, researchers mostly improve the network structure, but rarely improve from the unstructured aspect. The loss function is an important part of the segmentation method based on deep learning. The improvement of the loss function can improve the segmentation effect of the network from the root, and the loss function is independent of the network structure, which can be used in various network models and segmentation tasks in plug and play. Starting from the difficulties in medical image segmentation, this paper first introduces the loss function and improvement strategies to solve the problems of sample imbalance, edge blur, false positive and false negative. Then the difficulties encountered in the improvement of the current loss function are analyzed. Finally, the future research directions are prospected. This paper provides a reference for the reasonable selection, improvement or innovation of loss function, and guides the direction for the follow-up research of loss function.

    Release date:2023-06-25 02:49 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content