ObjectiveTo observe the clinical manifestation and gene mutation of a pedigree with Sorsby fundus dystrophy (SFD). Methods Ten members in 3 generations of a pedigree with SFD were included in this study. Four patients were observed in the pedigree, including 2 females and 2 males. All 10 members underwent comprehensive ophthalmic examinations, including best-corrected visual acuity, intraocular pressure, slit-lamp biomicroscopy, indirect ophthalmoscopy, fundus color photography and spectral domain optical coherence tomography. Genomic DNA was extracted from peripheral venous blood which was collected from all the members. Relevant exons of ocular diseases were detected by the next generation sequencing method from the proband. The other members underwent Sanger verification. Results Among the four patients, fading eyesight was appeared at their 44, 46, 47 and 40 year-old respectively. The two male patients had bilateral morbidity, and the two female patients had monocular symptoms. DNA sequencing results showed that the proband, other 3 patients and 2 members from the Ⅲ generation had heterozygous mutation of TIMP3 gene in exon 5. The amino acid encoded by TIMP3 gene No.204 codon changed from serine to cysteine (TIMP3:NM_000362:Exon5:c.A610T/p.S204C). CoclusionsThe invasion time of all the patients in this pedigree is after their 40 year-old. Heterozygous mutation at c.610A>T (p.S204C) in TIMP3 gene is the causative gene of SFD in this pedigree.
ObjectiveTo analyze the clinical and genetic characteristics of ADGRV1 gene mutation epilepsy.MethodsA retrospective collection of 26 patients with epilepsy diagnosed and related gene sequencing was performed in the Affiliated Hospital of Jining Medical College from January 2018 to December 2018. Five epilepsy patients with ADGRV1 mutations were screened out, and their clinical characteristics and gene mutation characteristics were summarized.ResultsA total of 5 epilepsy patients with ADGRV1 mutation were collected, including 1 male and 4 females, with an average age of (7±5.83) years. Three patients had a family history of epilepsy, and the father of the other two patients had a history of febrile seizures. 2 cases showed generalized tonic-clonic seizures, and 3 cases showed partial seizures followed by generalized seizures. The results of genetic testing revealed 7 mutation sites in the ADGRV1 gene, of which one missense mutation site c.2039A>G has been reported in the literature. Two of the 5 patients underwent epilepsy surgery, and they were still treated with multiple anti-epileptic drugs for a long time after the operation, and the other 3 patients were treated with anti-epileptic drugs for a long time. At present, 4 out of 5 patients had seizures still not under effective control, and 1 case did not relapse after being followed up for nearly 1 year.ConclusionThe clinical features of epilepsy caused by ADGRV1 gene mutation are early onset, mainly manifested as general tonic-clonic seizures or partial seizures secondary to generalized seizures, accompanied by disturbance of consciousness during seizures. The combined treatment of anti-epileptic drugs and postoperative anti-epileptic drugs is less effective. Genetic testing can guide genetic counseling and assisted diagnosis.
ObjectiveTo explore distribution characteristics of drug-resistant mutations and analyze drug-resistant genotypes in Mycobacterium tuberculosis in Deyang district, Sichuan. MethodsA total of 257 patients infected with Mycobacterium tuberculosis and positive for mycobacterium tuberculosis DNA who were detected from February 2010 to March 2013 were included in our research. Drug-resistance mutations were detected and analyzed using gene chip technology combining by polymerase chain reaction (PCR) and reverse dot hybridization (RDB). ResultsIn these 257 pulmonary tuberculosis patients, drug-resistance mutations were detected in 49 with pulmonary tuberculosis. Drug-resistance mutation rate at katG 315, rpsL 43, embB 306 and rpoB 531 (S531L) was 11.67% (30/257), 7.00% (18/257), 4.28% (11/257) and 3.89% (10/257), respectively. In 234 initially treated pulmonary tuberculosis patients, the rate of isoniazid-resistant genotype, rifampicin-resistant genotype, ethambutol-resistant genotype, streptomycin-resistant genotype and multi-drug resistant genotype was 9.83%, 4.27%, 3.42%, 5.13% and 2.99%, respectively. In 23 retreated pulmonary tuberculosis patients, these rates was 52.17%, 26.09%, 13.04%, 43.48% and 13.04%, respectively. ConclusionIn Deyang district, Sichuan, drug-resistant genotypes for isoniazid, rifampicin, ethambutol and streptomycin are detected in Mycobacterium tuberculosis. Most of the drug-resistant mutations occur at katG 315, rpsL 43, embB 306 and rpoB 531. The rates of drug-resistant genotypes and multi-drug resistance in initially treated pulmonary tuberculosis patients are lower than those in retreated patients. Multi-drug resistant rate is relatively low in our research.
Objective To compare the differences of chromosome aberration and Rb 1 gene mutation among 3 cloned cells of SO-Rb50 cell line of retinoblastoma. Methods 1.Three cell cloned strains named MC2, MC3, MC4 were isolated from SO-Rb50. 2. Gbanding and karyotype analysis were performed on the llth passage cells of the 3 cell strains.3.All exons and the promoter region of the Rb gene were detected by PCR-SSCP analysis in tumor cell DNA extracted from the 3 cell strains. Results 1.Both numerical and structural chromosomal aberrations could be observed in these 3 cell strains.Several kinds of structural chromosomal aberrations were observed.The chromosome aberrations in the same passage of different cell strains were different.Aberration of chromosome 13 was rare and the aberration feature was different in the 3 cell strains.Five marker chromosomes were identified.M1,t(1;1)qter-p35∷q24-ter could befound in all cell strains.Two of them M4 and M5,have not been reported in SO-Rb50 cell line previously.2.SSCP analysis of exon 24 showed that MC411 and MC3138 had abnormal band. Conclusions The characteristics of heterogeneity of the original tumor cell line SO-Rb50are still kept during a long-term culture in vitro and the cloned strains had dynamic changes during this period.Aberration of chromosome 13 is not the only cause of RB;aberration of chromosome 1,a commom event in some neoplasias as well as in SO-Rb50, plays a meaningful role in the immortalization of this cell line. (Chin J Ocul Fundus Dis, 1999, 15: 146-148)
Objective To investigate the mutations of the gene in Chinese patients with X linked juvenile retinoschisis (XLRS), and to provide the genetic diagnosis and consultation of heredity for the patients and their families. Methods Genomic DNA was isolated from leukocytes of 29 male patients with XLRS, 38 female carriers and 100 normal controls (the patients and the carriers were from 12 families). All 6 exons of XLRS1 gene were amplified by polhism (SSCP) assay. The positions and types of XLRS1 gene mutations were determined by direct sequencing. Results Eleven different XLRS1 mutations were identified in these 12 families, including one frameshift mutation due to base loss of the first exon: c.22delT(L9CfsX20), one nonsense mutation due to base loss of the first exon (Trp163X), one splice donor site mutation(c.52+2 Trarr;C; IVS1+2T to C), and eight missense mutation due to base replacement(Ser73Pro, Arg102Gln, Asp145His, Arg156Gly, Arg200Cys, Arg209His, Arg213Gln, and Cys223Arg). No gene mutation was detected in the control group. Four new mutations included frmaeshift mutation(L9CfsX20)and mutations of Asp145His, Arg156Gly, and Trp163X at the fifth exon. A newly discovered non-disease-related polymorphism (NSP) was the c.576C to T (Pro192Pro) change at the sixth exon. Conclusion Eleven different XLRS1 mutations were detected, which is the cause of XLRS in Chinese people. The detection of gene mutations may provide the guidance of genetic diagnosis and the consultation of family heredity for the patients and their families. (Chin J Ocul Fundus Dis, 2006, 22: 77-81)
Objective To analyze the pathogenic gene and clinical phenotypes of a family affected with rare sector retinitis pigmentosa (sector RP). Methods A retrospective clinical study. A patient with sector RP diagnosed in Renmin Hospital of Wuhan University and his parents were included in the study. Detailed medical history was collected; best corrected visual acuity (BCVA), fundus color photography, autofluorescence (AF), visual field, optical coherence tomography (OCT), electroretinogram, fluorescein fundus angiography (FFA), indocyanine green angiography (ICGA) examination were performed. The peripheral venous blood of the patient and his parents were collected, and DNA was extracted. A whole exon sequencing was used for the proband. The mutations were verified by targeted Sanger sequencing and quantitative polymerase chain reaction. Bioinformatics analysis and cosegregation analysis were performed. ResultsThe proband, a 17-year-old male, had presented with gradually decreased vision in the past 2 years with BCVA of 0.4 in both eyes. Retinal vessels attenuation and macular dystrophy without obvious pigmentation on the fundus were observed. AF showed, in bilateral eyes, a symmetrical hypo-autofluorescent region only in the inferonasal quadrant and “petal-like” hyper-AF macula. The visual field examination showed defects in the superotemporal quadrant corresponding to the affected retina. OCT showed loss of the photoreceptor layer except for the foveal region. Electroretinogram examination presented reduced scotopic wave peaks and extinct photopic response. FFA and ICGA showed the atrophy retinal pigment epithelium around the optic disk and in the inferior retina. The clinical phenotypes of the parents were normal. The whole exon sequencing identified one mutation in SPATA7 gene, c.1112T>C (p.Ile371Thr) in exon10 and a copy number variation in trans. The missense mutation resulted in the change of isoleucine to threonine at amino acid 371 in the encoded SPATA7 protein, and the mother carried this heterozygous mutation c.1112T>C. According to the guidelines of the American College of Medical Genetics and Genomics (ACMG) criteria and guidelines for classification of genetic variants, the missense mutation was classified as the uncertain significance. The CNV, originating from his father, contributed to the loss of exon10 and was confirmed as the likely pathogenic variant. ConclusionsThe macula can be involved in sector RP, leading to the macular dystrophy. The missense variant in SPATA7 gene, c.1112T>C (p.Ile371Thr), might be a pathogenic mutation site in this pedigree.
Retinitis pigmentosa (RP) is a group of hereditary blinding fundus diseases caused by abnormalities in photoreceptors of the retina. RP is highly heterogeneous in hereditary and cdinical phenotypes. It can be divided into simple type RP and syndrome type RP. The main inheritance patterns are autosomal dominant, autosomal recessive inheritance and X-linked inheritance. With the popularization and clinical application of gene sequencing technology, more and more disease-causing genes have been discovered, and these genes are mainly expressed in photoreceptor cells and retinal pigment epithelial cell. ln-depth understanding of RP pathogenic genes not only provides a theoretical basis for RP diagnosis and genetic counseling, but also provides guidance for RP gene therapy.
ObjectiveTo conduct a systematic review of clinical manifestations, treatment, and associated genotyping of Sorsby fundus dystrophy (SFD). MethodsAn evidence-based medicine study. Sorsby fundus dystrophy, anti-vascular endothelial growth factor therapy, choroidal neovascularization, macular neovascularization, and TIMP3 gene were hereby used as search terms. Relevant literature was searched in CNKI, Wanfang, PubMed of the National Library of Medicine, and Embase of the Netherlands. The time span for literature searching ranged from the establishment of the database to April 2022, and two reviewers independently screened the literature and extracted relevant data, with duplicates, incomplete or irrelevant articles, and review articles excluded. SPSS26.0 software was used for analysis. The 95% confidence interval (CI) was used as an estimate of the effect size. The clinical manifestations, treatment and related pathogenic genes of SFD were counted and recorded. ResultsAccording to the search strategy, 157 pieces of literature were initially retrieved, and 49 eyes of 35 patients from 16 articles were finally included for analysis, among which, 17 patients were male, 13 patients were female, and 5 patients were unknown gender; 16 involved left eyes, 19 involved right eyes, and 14 involved unidentified eyes. The age of the disease onset was 42.33±2.19 years (28-59) years old. There were 19 cases with a positive family history, and the total positive rate was 54.3% (19/35, 95%CI 36%-72%). There were 31 cases of gene mutation, all of which were TIMP3. In the included literature, there were 2 and 2 cases with no mutation and unreported loci, respectively, with a total positive rate of 93.9% (31/33, 95%CI 85%-100%). Among the 31 cases with gene mutation, 22, 4, 1, and 4 cases were in the UK, Germany, Switzerland, and Chinese, respectively, and the detection rates were all 100% (22/22, 4/4, 1/1, 4/4). The clinical manifestations of SFD were mainly yellow-white deposits in the fundus and choroidal neovascularization (CNV) in the macula, thereby leading to a decrease in central vision, followed by the expansion of the deposits to the periphery, the further development of CNV, and a severe decline in vision caused by peripheral retinal and choroidal atrophy. The treatment methods for SFD include photodymatic therapy, anti-VEGF drugs, glucocorticoids, vitamin A, etc., among which, anti-VEGF drugs were considered the first-line treatment, and the combined treatment was provided with a better prognosis than a single treatment. ConclusionsVariations in the TIMP3 gene cause SFD, the fundus characteristic manifestations of which, are yellowish-white deposits and CNV, which develop from the center to the periphery, thus resulting in progressive decline of visual acuity. Current studies have shown that combined therapy presents a better prognosis than monotherapy.
Objective To analyze the new primary mutation in Chinese people with Leberprime;s hereditary optic neuropathy (LHON). Methods Genomic DNA was collected from 260 suspected LHON patients and 100 normal healthy persons. The mitochondria DNA mutation at nucleotide position (NP) 15257 and the hot spot (14452-14601 bp) of ND6 gene which include the mutations at NP (14482, 14498, 14568, 14596, 14495, and 14459) were screened by using polymerase chain reaction (PCR), heteroduplex-single strand conformation polymorphism (HA-SSCP) and restriction fragment length polymorphism (RFLP) analysis and sequencing. Primary mutation spectrum of Chinese race was analyzed. Results Eight kinds of polymorphism of mitochondria DNA were found in 260 suspected LHON patients and 100 normal healthy persons, including NP 14488C, 14518G, and 14617G which hadnrsquo;t been reported (http://www.mitomap.org/). No mutation at NP 15257, 14482, 14498, 14568, 14596, 14495, and 14459 was found. Conclusion The NP 15257A may not be the primary mutation in Chinese. Because of the race difference, 14452-14601 bp in ND6 gene may not be the hot spot in Chinese patients with LHON, and other hot spots may exist. (Chin J Ocul Fundus Dis, 2006, 22: 82-85)
ObjectiveTo study the characteristics of the genotype and phenotypic in a family with X-linked retinoschisis (XLRS) due to RS1 mutation. MethodsA retrospective clinical study. An XLRS family of 4 generations of 26 people were included in the study. Among them, 8 participants were males and 7 participants were females. Routine ophthalmologic examination was performed on 3 patients in the family including the proband and 12 patients with normal phenotype. Optical coherence tomography was performed in 2 of the 3 patients. Peripheral venous blood was extracted from all participants, whole-genome DNA was extracted, and potential pathogenic genes were screened by Panel sequencing. Conservative analysis, pathogenicity analysis and protein structure prediction were carried out by software tools. The pathogenicity of gene mutations was analyzed according to the American Society of Medical Genetics and Genomics (ACMG) guidelines. ResultsThe proband was 3 years old. Optical coherence tomography (OCT) examination showed that the retinal core layer in the macular area of both eyes had a cystic change, which was segmented by vertical or oblique bridging tissue. The proband's uncle was 32 years old. OCT examination showed atrophy in the macular area of the left eye. The macular area of the right eye was cystoid, segmented by vertical or oblique bridging tissue. No abnormality was found in the fundus examination of the proband's parents and 10 members of his family. Panel sequencing showed that c.361C>T/ p.Q121X hemizygous mutation was found in the fifth exon of RS1 gene in the proband (Ⅳ3) and 2 patients (Ⅱ1, Ⅲ8). The mother was a heterozygous mutation carrier of the gene, while the father had no mutation. The mutant gene causes premature termination of RS1, a truncated protein encoding 224 amino acids to 120 amino acids. Of the 10 patients with normal fundus examination, 6 participants were normal. The mutation was carried by four people, which were women. Homology analysis of the protein sequence showed that the mutant site was highly conserved in 12 mammals. Three-dimensional structural analysis of RS1 protein showed that the c-terminal amino acid sequence of the mutant protein was more than 50% missing. Analysis of ACMG guidelines indicated that the mutation was pathogenic. ConclusionThe RS1 mutation site c.361C>T/p.Q121X is a new mutation site of XLRS.