Osteoblasts were cultured and isolated from a piece of tibial pettiosteum of four New-Zealandrabbits. After subeultured,these cells Were incubatd in vitro with tritiated thvmidine for 36 hoursand then these labeled cells were implanted in the subeutaneous layer of the defects of the auriclarcartilage and the radial bone, After 2 weeks and 4 weeks respectively, these rabbits were killed andthe spoimens were obtained from the site where the cells had been transplanted. The transformation of these cells was observed by autoradiographic method. The results indicated that nearly all of the cultured cells were labeled. After 2 weeks, it was observed that many labeled osteoblasts were in different stages of differentiation, some were beried by extracellular matrix and resembled osteocyte, thers were differentiated into chondrocyte-like cell. In addition, some labeled osteoblasts were congregated in the form of multinucleated osteoclast. After 4 weeks , in the subcutaneous layer the labeled osteoblasts were changed to osteoid tissue and in the defect of the auricular crtilage these cells transformed into chondritic tissue; moreover, those labeled osteoblsts which had been implanted into the radial defect had differentiated into typical bone tissue. The results of this research indicated that the osteoblasts isolated from the periosteum if reimplanted to the same donor might be possible to repair the bone and cartilage defects.
In order to explore further the regulatory factors to the potentiality in inducing osteogenesis by fibroblasts, the fibroblasts were isolated, and purified from human skin, and were grown in incubation in the media of EGF, IL-6, TNF-alpha and BMP2 at different concentrations for two weeks, then, the markers for osteogenic features were investigated by biochemistry, histochemistry and electron microscopic observations. It was found that the combined use of TNF-alpha and BMP2 could stimulate fibroblasts to secrete alkaline phosphatase, osteocalcin and collagen, and the morphological changes of the fibroblasts were also very striking. In the extracellular matrix, the collagen fibrils, with or without periodicity, were arranged regularly or randomly oriented, and numerous minute calcium granules were interspersed among them. The fibroblasts were interwoven one on top of another in the form of multilayer structure and on the surface, there were secreting granules and piling up of calcium crystals which coalessed steadily and increased in size in forming bony nodules. It was considered that TNF-alpha and BMP2 were capable of inducing the fibroblasts to form bone.
Objective To investigate the effect of simvastatin on inducing endothel ial progenitor cells (EPCs) homing and promoting bone defect repair, and to explore the mechanism of local implanting simvastatin in promoting bone formation. Methods Simvastatin (50 mg) compounded with polylactic acid (PLA, 200 mg) or only PLA (200 mg) was dissolved in acetone (1 mL) to prepare implanted materials (Simvastatin-PLA material, PLA material). EPCs were harvested from bone marrow of 2 male rabbits and cultured with M199; after identified by immunohistochemistry, the cell suspension of EPCs at the 3rd generation (2 × 106 cells/mL) was prepared and transplanted into 12 female rabbits through auricular veins(2 mL). After 3 days, the models of cranial defect with 15 cm diameter were made in the 12 female rabbits. And the defects were repaired with Simvastatin-PLA materials (experimental group, n=6) and PLA materials (control group, n=6), respectively. The bone repair was observed after 8 weeks of operation by gross appearance, X-ray film, and histology; gelatin-ink perfusion and HE staining were used to show the new vessels formation in the defect. Fluorescence in situ hybridization (FISH) was performed to show the EPCs homing at the defect site. Results All experimental animals of 2 groups survived to the end of the experiment. After 8 weeks in experimental group, new bone formation was observed in the bone defect by gross and histology, and an irregular, hyperdense shadow by X-ray film; no similar changes were observed in control group. FISH showed that the male EPC containing Y chromosome was found in the wall of new vessels in the defect of experimental group, while no male EPC containing Y chromosome was found in control group. The percentage of new bone formation in defect area was 91.63% ± 4.07% in experimental group and 59.45% ± 5.43% in control group, showing significant difference (P lt; 0.05). Conclusion Simvastatin can promote bone defect repair, and its mechanism is probably associated with inducing EPCs homing and enhancing vasculogenesis.
Objective To evaluate the bone regenerative potential of reconbinant human bone morphogenetic protein 2(rhBMP-2) / collagen on adult rat calvarial bone. Methods A tight subperiosteal pocket was produced under both sides ofthe temporal muscle in rats. rhBMP-2 / collagen was implanted in one side and collagen alone was implanted in the other side as control. The rats were sacrificed 2, 4 and 8 weeks after operation. The specimen was harvested and examined histologically. For morphometric analysis, the thickness of the temporal bone of both sides was measured and compared. Results The rhBMP-2 / collagen onlay implant resulted in active bone formation and the augmented bone was connected directly with the original bone, whereas the collagen alone resulted in neither bone nor cartilage production. The ossification process in the rhBMP-2 / collagen occurred directly through bone formation, similar to intramembranous ossification. Conclusion rhBMP-2 / collagen is an effective material as a biological onlay implant.
Objective To construct recombinant lentiviral vectors of porcine bone morphogenetic protein 2 (BMP-2) gene and to detect BMP-2 gene activity and bone marrow mesenchymal stem cells (BMSCs) osteogenetic differentiation so as to lay a foundation of the further study of osteochondral tissue engineering. Methods BMSCs were isolated from bone marrow of 2-month-old Bama miniature porcines (weighing, 15 kg), and the 2nd generation of BMSCs were harvested for experiments. The porcine BMP-2 gene lentiviral vector was constructed by recombinant DNA technology and was used to transfect BMSCs at multiplicity of infection (MOI) of 10, 25, 50, 100, and 200, then the optimal value of MOI was determined by fluorescent microscope and inverted phase contrast microscope. BMSCs transfected by BMP-2 recombinant lentiviral vectors served as experimental group (BMP-2 vector group); BMSCs transfected by empty vector (empty vector group), and non-transfected BMSCs (non-transfection group) were used as control groups. RT-PCR, immunohistochemistry staining, and Western blot were performed to detect the expressions of BMP-2 mRNA and protein. Then the BMSCs osteogenesis was detected by alkaline phosphatase (ALP) staining, ALP activities, and Alizarin red staining. Results The recombinant lentiviral vectors of porcine BMP-2 gene was successfully constructed and identified by RT-PCR and gene sequencing, and BMSCs were successfully transfected by BMP-2 recombinant lentiviral vectors. Green fluorescent protein could be seen in the transfected BMSCs, especially at MOI of 100 with best expression. The immunohistochemistry staining and Western blot showed that BMSCs transfected by BMP-2 recombinant lentiviral vectors could express BMP-2 protein continuously and stably at a high level. After cultivation of 2 weeks, the expression of ALP and the form of calcium nodules were observed. Conclusion The porcine BMP- 2 gene lentiviral vector is successfully constructed and transfected into the BMSCs, which can express BMP-2 gene and protein continuously and stably at a high level and induce BMSCs differentiation into osteoblasts.
OBJECTIVE To study the bone formation and osteogenesis after transplantation of human periosteal mesenchymal stem cells(PMSC). METHODS Suspension of PMSC which obtained from cell culture of periosteal segments in vitro were injected into the backs of nude mice subcutaneously, and the fracture site of neck of femur in old person. RESULTS Subdermal nodules were observed by naked eyes after 11 days of transplantation. 4 weeks later, their anatomic diameter reached 2-7 mm(averaged 3.6 mm). It was proved that the subdermal nodules were trabecular ball trapped with fibrous tissue. The nodules were investigated by human special apoB gene with PCR, and the test of anti-human-tissue precipitin reaction(AHTPR). The results of PCR and AHTPR were positive reaction. There were no subdermal nodules formed in the sites of injection of frozen-melted PMSC or culture medium. The new callus in the sites of fracture were tested by PCR test, and two kinds of apoB gene products were detected. CONCLUSION The results indicated that the implanted PMSC could form new bone directly in nude mice, and the cells of donor and recipient all could form new bone.
ObjectiveTo compare the effects on the osteogenesis of bone marrow mesenchymal stem cells (BMSCs) between hypoxia and hypoxia mimetic agents dimethyloxalylglycine (DMOG) under normal oxygen condition. MethodsBMSCs were isolated and cultured from healthy 3-4 weeks old Kunming mouse. Cell phenotype of CD29, CD44, CD90, and CD34 was assayed with flow cytometry; after osteogenic, adipogenic, and chondrogenic induction, alizarin red staining, oil red O staining, and toluidine blue staining were performed. The passage 3 BMSCs were cultured under normal oxygen in control group (group A), under 1%O2 in hypoxia group (group B), and under normal oxygen and 0.5 mmol/L DMOG in DMOG intervention group (group C). BMSCs proliferation was estimated by methyl thiazolyl tetrazolium assay at 1, 2, 3, and 4 days. Alkaline phophatase (ALP) expression was determined at 7 and 14 days after osteogenic induction. Western blot was employed for detecting hypoxia inducible factor-1α(HIF-1α) at 24 hours. Real time fluorescence quantitative PCR was employed for detecting the mRNA expression of runt-related transcription factor 2 (RUNX2) and Osterix at 3 and 7 days. Alizarin red staining was applied to assess the deposition of calcium tubercle at 21 days. ResultsThe BMSCs presented CD29(+), CD44(+), CD90(+), and CD34(-); and results of the alizarin red staining, oil red O staining, and toluidine blue staining were positive after osteogenic, adipogenic, and chondrogenic induction. No significant difference in BMSCs proliferation was observed among 3 groups at 1 day (P>0.05); compared with group A, BMSCs proliferation was inhibited in group C at 2, 3, and 4 days, but no significant difference was observed (P>0.05); compared with group A, BMSCs proliferation was significantly promoted in group B (P < 0.05). At each time point, compared with group A, the ALP expression, HIF-1αprotein relative expression, and mRNA relative expressions of RUNX2 and Osterix were significantly up-regulated in groups B and C (P < 0.05); compared with group B, the ALP expression, the RUNX2 and Osterix mRNA relative expression were significantly up-regulated in group C (P < 0.05); compared with group C, the HIF-1αprotein relative expression was significantly up-regulated in group B (P < 0.05). The alizarin red staining showed little red staining materials in group A, some red staining materials in group B, and a large number of red staining materials in group C. ConclusionHypoxia can promote BMSCs proliferation, DMOG can not influence the BMSCs proliferation; both hypoxia and DMOG can improve osteogenic differentiation of BMSCs, and DMOG is better than hypoxia in improving the BMSCs osteogenesis.
Objective To evaluate the osteogenic potential of human bone marrow mesenchymal stem cells (MSCs) transferred with human bone morphogenetic protein 2(BMP 2) gene by adenovirus. Methods The MSCs were isolated from human bone marrow and cultured in vitro. They were divided into 3 groups: Adv hBMP 2 transduced group; Adv βgal transduced group; untransduced group. Western immunoblot analysis, alkaline phosphatase(ALP) staining, Von Kossa staining, and a quantitative ALP activity assay were performed. Nine unde mice received injection into a thigh muscle to test the osteoinductivity of the three types of cells. Results In the Adv-hBMP-2 transprotein; most MSCs were stained positively for ALP activity 9 day after transduction; the MSCs reached the peak of ALP activity 12 day after transduction; the calcified nodes formed 21 days after transduction. The ectopic bones formed in the thigh muscles of the nude mice. Little bone formation was observed in the other groups 4 weeks after cell injection. Conclusion Adenovirus mediated hBMP-2 gene transfection can induce osteogenesis of human bone marrow mesenchymal stem cells.
Objective To establish a method of isolating and culturing adult human bloodderived mesenchymal stem cells(MSCs) and to investigate their osteogenic potential in vitro. Methods Thirty peripheral blood sampleswere collected from 30adult volunteers(15 ml per person).Adult human MSCs derived from peripheral blood were isolated from the lymphocyte separation fluid fraction of mononuclear cells, cultured in α-Modified Eagle’s Medium with low glucose containing 20% fetal bovine serum, and proliferated through a process of subculturing. The phenotype of MSCs was analyzed with flow cytometry. For in vitro osteogenic differentiation, MSCs from the second passage grew in the presence of osteogenic supplements (100 nmol/L dexamethasone,10 mmol/L β-glycerophosphate,50 μmol/L vitamin C, and 10 nmol/L 1,25-2-hydroxide vitamin D3). In the fifth passage cells, the activity of alkaline phosphatase, the expression level of collagen typeI, osteocalcin and osteonectin were determined. And the calcium tubercle formation would be examined after the continual one-month culture of the fifth passage. Results MSCs exsited in the pheripheral blood of adult human. And the clone forming efficiency of blood-derived MSCs was 0.27±0.22/106 mononuclear cells. The MSCs expressed CD44,CD54,CD105,and CD166,but did not CD14, CD34, CD45,and CD31.Under the function of osteogenic supplements, the MSCs were found to be higher activity of alkaline phosphatase and higher expression levels of collagen type Ⅰ, osteocalcin and osteonectin. And the calcium tubercle formation was examined throughtetracycline fluorescence labeling method. Conclusion The isolation and cultureconditions established for adult human MSCs may select a distinct population of peripheral blood-derived adherent cells. Adult human blood-derived MSCs possess osteogenic potential in vitro, and may be used as seed cells for bone tissue engineering.
OBJECTIVE To observe the osteogenesis of percutaneous autogenous bone marrow grafting in cicatricial bone defect, to seek a good method for treating fracture nonunion. METHODS Eighteen rabbits were adopted in this study. 1 cm bone defect model was made in each side of radius, 6 weeks later, 2 ml autogenous bone marrow was injected in the right radial bone defect as experimental group, 2 ml autogenous peripheral blood in the left side as control group. X-ray features, histologic changes, Ca and P content in the site of bone defect were studied in various times. Also 15 patients were treated clinically for the nonunion fracture, the average time from nonunion to bone marrow grafting was 13 months. RESULTS In experimental group, the increasing new bone tissue were observed in X-ray and histologic examination. While in control group, no osteogenesis was observed. Ca and P content of experimental group was higher than that of control group. For the 15 patients, 13 cases healed in 5-9 months, 2 cases failed. CONCLUSION Percutaneous autogenous bone marrow grafting is capable of osteogenesis in the cicatricial bone defects. It can be used in nonunion cases which are not fit for operation of bone grafting because of poor condition of the skin.